LANDESSTELLE FÜR BAUTECHNIK

Braustraße 2, 04107 Leipzig Telefon: (0341) 977 3710 Telefax: (0341) 977 3999

Geschäftszeichen: 37-2625.10/10/10

Bescheid

über

die baustatische Typenprüfung

Bescheid Nr.:

T12-105

vom:

29.06.2012

Gegenstand:

Aluminiumtrapezprofile der Firmenbezeichnung

"Kalzip TR 29/124", "Kalzip TR 30/167", "Kalzip TR 35/200", "Kalzip TR 40/185", "Kalzip TR 45/150", "Kalzip TR 50/167"

und "Kalzip TF 800"

Antragsteller:

Kalzip GmbH

August-Horch-Straße 20-22

D-56070 Koblenz

Planer:

Ingenieurbüro für Leichtbau R. Holz

Rehbuckel 7

D-76228 Karlsruhe

Hersteller:

wie Antragsteller

Geltungsdauer bis:

30.06.2017

Dieser Bescheid umfasst 4 Seiten und 42 Seiten Anlagen, die Bestandteil dieses Bescheides sind.

1. Allgemeine Bestimmungen

- 1.1. Die typengeprüften Bauvorlagen können anstelle von im Einzelfall zu prüfenden Nachweisen der Standsicherheit dem Bauantrag beigefügt werden.
- 1.2. Die Typenprüfung befreit nicht von der Verpflichtung, für jedes Bauvorhaben eine Genehmigung einzuholen, soweit gesetzliche Bestimmungen hiervon nicht befreien.
- 1.3. Die Ausführungen haben sich streng an die geprüften Pläne und an die Bestimmungen dieses Bescheides zu halten. Abweichungen hiervon sind nur zulässig, wenn sie die Zustimmung im Zuge einer Einzelprüfung gefunden haben.
- 1.4. Die typengeprüften Unterlagen dürfen nur vollständig mit dem Bescheid und den dazugehörigen Anlagen verwendet oder veröffentlicht werden. In Zweifelsfällen sind die bei der Landesstelle für Bautechnik befindlichen geprüften Unterlagen maßgebend.
- 1.5. Die Geltungsdauer dieser Typenprüfung kann auf Antrag jeweils um bis zu fünf Jahren verlängert werden. Der nächste Sichtvermerk durch die Landesstelle für Bautechnik ist dann spätestens am 30.06.2017 erforderlich.
- 1.6. Der Bescheid kann in begründeten Fällen, wie z. B. Änderungen Technischer Baubestimmungen oder wenn neue technische Erkenntnisse dies erfordern, entschädigungslos geändert oder zurückgezogen werden.
- 1.7. Dieser Bescheid über die baustatische Typenprüfung gilt unbeschadet der Rechte Dritter.
- 1.8. Die Typenprüfung berücksichtigt den derzeitigen Stand der Erkenntnisse. Eine Aussage über die Bewährung des Gegenstandes dieser Typenprüfung ist damit nicht verbunden.

2. Konstruktionsbeschreibung

Aluminiumtrapezprofile der Firmenbezeichnung "Kalzip TR 29/124", "Kalzip TR 30/167", "Kalzip TR 35/200", "Kalzip TR 40/185", "Kalzip TR 45/150", "Kalzip TR 50/167" und "Kalzip TF 800" nach DIN EN 485-2 mit Blechdicken von:

Kalzip TR 29/124

t = 0.50 mm bis 1.20 mm

Kalzip TR 30/167, Kalzip TR 35/200,

Kalzip TR 40/185, Kalzip TR 45/150,

Kalzip TR 50/167

t = 0.70 mm bis 1.20 mm

Kalzip TF 800

t = 0.80 mm bis 1.20 mm

3. Zutreffende Technische Baubestimmungen

DIN 18807-6:09-1995: "Trapezbleche im Hochbau; Aluminium-Trapezprofile und ihre Verbindungen, Ermittlung der Tragfähigkeitswerte durch Berechnung"

DIN 18807-7:09-1995: "Trapezbleche im Hochbau; Aluminium-Trapezprofile und ihre Verbindungen, Ermittlung der Tragfähigkeitswerte durch Versuche" FREISTAAT SACHSEN

DIN 18807-9:1998-06: "Trapezprofile im Hochbau - Teil 9: Aluminium-Trapezprofile und ihre Verbindungen; Anwendung und Konstruktion"

DIN EN 485-2:2009-01: "Aluminium und Aluminiumlegierungen - Bänder, Bleche und Platten - Teil 2: Mechanische Eigenschaften"

DIN EN 15088:2006-03: "Aluminium und Aluminiumlegierungen - Erzeugnisse für Tragwerksanwendungen - Technische Lieferbedingungen"

4. Eingesehene Unterlagen

Bescheid zur Typenprüfung 1-35/99 der hessischen Landesprüfstelle vom 16.06.1999
Bescheid zur Typenprüfung 1-81/95 der hessischen Landesprüfstelle vom 14.09.1995
Bescheid zur Typenprüfung 2-81/95 der hessischen Landesprüfstelle vom 09.06.2000
Änderungs- und Verlängerungsbescheid zur Typenprüfung 1-80/95, 2-80/95 und 3-80/95 der hessischen Landesprüfstelle vom 26.11.2003

5. Geprüfte Unterlagen

- 5.1. Statische Berechnung Nr. 757/06: "Charakteristische Tragfähigkeits- und Querschnittswerte für das Aluminium-Trapezprofil Corus Kalzip TR 29/124"; Ingenieurbüro für Leichtbau; 25.05.2007; 41 Seiten
- 5.2. Statische Berechnung Nr. 951/09: "Erstellung von Typenblättern und Bemessungstafeln nach DIN 18807 für das Aluminium-Trapezprofil TF 800"; Ingenieurbüro für Leichtbau; 07.05.2009; 17 Seiten
- 5.3. Formblätter (Typenblätter) zu den Profilen gemäß Tabelle:

Formblätter (Typenblätter) Anlage Nr.:	Profil:	R _{p0,2}
1.1.1, 1.1.2, 1.1.3, 1.2.1, 1.2.2, 1.2.3	Kalzip TR 29/124	185
2.1.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3	Kalzip TR 30/167	185
3.1.1, 3.1.2.1, 3.1.2.2, 3.1.3, 3.2.1, 3.2.2, 3.2.3	Kalzip TR 35/200	185
4.1.1, 4.1.2.1, 4.1.2.2, 4.1.3, 4.2.1, 4.2.2, 4.2.3	Kalzip TR 40/185	185
5.1.1, 5.1.2, 5.1.3, 5.2.1, 5.2.2, 5.2.3	Kalzip TR 45/150	185
6.1.1, 6.1.2, 6.1.3, 6.2.1, 6.2.2, 6.2.3	Kalzip TR 50/167	185
7.1, 7.2, 7.3	Kalzip TF 800	185

5.4. Anlage 8: Ausführungsbeispiele für Kalotten zur Verwendung mit Kalzip Aluminium-Trapezprofilen.

6. Prüfergebnis

- 6.1. Die unter Ziffer 5 aufgeführten Unterlagen wurden in baustatischer Hinsicht geprüft.
- 6.2. Sonstige bauordnungsrechtliche oder andere behördliche Anforderungen waren nicht Gegenstand der Prüfung.
- 6.3. Der Gegenstand der Typenprüfung entspricht den unter Ziffer 3 aufgeführten Technischen Baubestimmungen.
- 6.4. Unter Beachtung dieses Bescheides und den Vorgaben nach den geprüften Unterlagen bestehen gegen eine Ausführung und Anwendung der Trapezprofile in den vorgegebenen Grenzen aus baustatischer Sicht keine Bedenken.

7. Rechtsgrundlagen

Die Landesdirektion Sachsen - Landesstelle für Bautechnik - ist gemäß § 32 DVO-SächsBO Prüfamt zur Typenprüfung; zur Typenprüfung von Standsicherheitsnachweisen siehe die jeweilige Landesbauordnung und § 66 Abs. 4 Satz 3 der Musterbauordnung (Fassung 2002).

8. Gebühren

Der Antragsteller trägt die Kosten des Verfahrens. Der Kostenbescheid wird gesondert ausgestellt.

9. Rechtsbehelfsbelehrung

- 8.1 Gegen diesen Typenprüfbescheid kann innerhalb eines Monates nach Bekanntgabe Widerspruch erhoben werden. Dieser Widerspruch ist bei der Landesdirektion Sachsen, Landesstelle für Bautechnik, schriftlich oder zur Niederschrift einzulegen.
- 8.2 Bei Zusendung durch einfachen Brief gilt die Bekanntgabe mit dem dritten Tag nach Abgabe zur Post als bewirkt, es sei denn, dass der Typenprüfbescheid zu einem späteren Zeitpunkt zugegangen ist.

FREISTAAT

Leiter

Dr.-Ing. Biegholdt

Bearbeiter

Christian Kutzer

Anlagen: Siehe Abschnitt 5.3 und 5.4

Kalzip TR 29/124

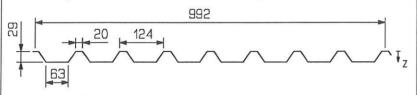
Querschnitts- und Schubfeldwerte nach DIN 18807 Teil 6

Anlage 1.1.1 zum Prüfbescheid ALS TYPENENTWURF in baustatischer Hinsicht geprüft.

Prüfbescheid Nr. T12-105 Landesdirektion Leipzig Landesstelle für Bautechnik

Leipzig, den 29.06.2012 FREISTAAT Bearbeiter:

2,64


1,60

3,30

SACHSEN

Maße in mm. Radien R= 4 mm

Nennwert der Spannung an der 0,2%- Dehngrenze: $R_{p0,2}$ = 185 N/mm²; Zugfestigkeit R_m = 220 N/mm²

1,13

1,13

Maßgebende Querschnittswerte Grenzstützweite 3) Blech-Eigen-Biegung 1) Normalkraftbeanspruchung dicke last Einfeld- Mehrfeldwirksamer Querschnitt 2) nicht reduzierter Querschnitt träger träger A_{ef} I_{gr} Z_{g} Zef g t kN/m² cm⁴/m cm4/m cm²/m cm²/m cm cm mm cm cm m m 7,74 1,33 1,45 0,5 0,017 5,61 6,19 1,13 1,86 2,09 7,11 1,31 1,45 0,6 0,020 9,55 7,43 1,13 1,86 3,00 1,20 0,7 0,024 11,10 8,68 8,67 1,14 1,86 4,09 1,29 1,45 1,50 1,92 0,8 0,027 12,70 10,30 9,91 1,15 1,86 5,26 1,27 1,47 1,53 1,22 1,55 2,20 2,75

1,86

1,86

7,83

10,90

1,17

Schubfeldwerte

0,034

0,041

15,90

19,10

13,80

17,30

12,40

14,90

1,0

1,2

			$T_{3,k} = G_S/7$ $G_S = 10^4$	750 in kN/m $\frac{1}{1}(k_1^l + k_2^l / L_s)$			
t mm	L _R ⁴⁾ m	T _{1,k} ⁴⁾ kN/m	k′ ₁ m/kN	k [/] ₂ m ² /kN	k [*] , kN ⁻¹	k [*] ₂ ⁵⁾ m²/kN	k ₃ ⁶⁾

- 1) Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- ²⁾ Wirksamer Querschnitt für eine konstante Druckspannung $\sigma = R_{00.2}$
- 3) Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden
- 4) Für Einzelstützweiten $L_{si} \le L_R$ darf $T_{1,k}$ aus der Tabelle entnommen oder mit $(L_R/L_{si})^2$ erhöht werden; für $L_{si} > L_R$ muß $T_{1,k}$ mit $(L_R/L_{si})^2$ abgemindert werden. Für Einfeldträger ist $T_{1,k} = 2 \times T$ abellenwert.
- 5) Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = [(k_1' + k_1^* \cdot e_L) + (k_2' + k_2^*)/L_s] \cdot 10^{-1} \cdot a \cdot \text{vorh T}$$
 in mm

mit e, = Abstand der Verbindungen im Längsstoß in m

a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluss in kN/m

6) $T \times k_3 + A \le R_{A,k} / \gamma_M$, mit $T = \gamma_F$ - facher vorhandener Schubfluss

Kalzip TR 29/124

Charakteristische Tragfähigkeitswerte nach DIN 18807 Teil 6

Anlage 1.1.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012 Leiter: Bearbeiter:

FREISTAAT

Profiltafel in

Positivlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächenbelastung ¹⁷ Nennwert der Spanhung an der 0,2%- Dehngrenze: $R_{p,0.2} = 185 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1 \text{ zu verwenden}$.

uci 0,2	270 DOTT	grenze. 17 _{p0,2}	100 14/111		Ollolollolllol			Ullin	CUTION SA	
Blech- dicke	Feld- moment	Endaufla- gerkraft		Elastis	ch aufnehm	bare Schni	ttgrößen a	n Zwisch	enstützen ⁵⁾	
gioile.		germane			max. Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager- kraft
t	M _{F,k}	$R_{A,k}$	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	M _{B,k}	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
		b _A = 40 mm ²⁾³⁾	Z	wischena	uflagerbreit	e 3)	Z	wischena	auflagerbrei	te 4)
		D _A -40 IIIII-/-7	b _r	$b_B \ge 40 \text{ mm}; \varepsilon = 2$			b _e	≥ 120	mm; ε=	= 2
0,50	0,534	3,87	0,519	8,64	0,519	7,730	0,519	14,01	0,519	12,53
0,60	0,773	5,76	0,735	12,88	0,735	11,520	0,735	20,87	0,735	18,67
0,70	1,065	8,04	0,919	17,98	0,919	16,080	0,919	29,15	0,919	26,07
0,80	1,269	10,71	1,115	23,96	1,115	21,428	1,115	38,84	1,115	34,74
1,00	1,586	17,25	1,536	38,57	1,536	34,500	1,536	62,53	1,536	55,93
1,20	1,903	25,38	1,999	56,75	1,999	50,760	1,999	92,00	1,999	82,29

Charakteristische Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächenbelastung ¹⁾ Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1$ zu verwenden.

Blech- dicke	Feld- moment	Verbi	ndung in j Kalotten	edem Gu ılänge≥4		otte	Verb	indung in jedem anliegenden Gurt			
		Endauf- lager	Z	wischen	auflager ⁵⁾⁷	7)	Endauf- lager	7	Zwischen	auflager ⁶⁾⁷	')
t	M _{F,k}	$R_{A,k}$	M _{B,k}	MORE THE SERVE HAVE A STREET AND AN AND AND AND AND AND AND AND AND				$M_{B,k}^0$	V_k^0	max M _{B,k}	$\max V_{_k}$
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
0,50	0,519	3,87	0,534	8,64	0,534	7,73	16,45	0,694	21,39	0,534	16,45
0,60	0,735	5,76	0,773	12,88	0,773	11,52	23,69	1,00	30,80	0,773	23,69
0,70	0,919	8,04	1,065	17,98	1,065	16,08	32,25	1,38	41,93	1,065	32,25
0,80	1,115	10,71	1,269	23,96	1,269	21,43	42,12	1,65	54,76	1,269	42,12
1,00	1,536	17,25	1,586	38,57	1,586	34,50	57,98	2,06	75,37	1,586	57,98
1,20	1,999	25,38	1,903	56,75	1,903	50,76	69,57	2,47	90,44	1,903	69,57

- An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M_{E,k}, sondern mit dem Stützmoment max M_{B,k} für die entgegengesetzte Lastrichtung zu führen.
- 2) $b_{_{A}} = \text{Endauflagerbreite}$. Bei einem Profiltafelüberstand ü [mm] $\geq s_{_{A}}/t$ dürfen die $R_{_{A,k}}$ Werte um 20% erhöht werden.
- Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 4) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- $^{5)}$ Interaktionsbeziehung für $M_{\scriptscriptstyle B}$ und $R_{\scriptscriptstyle B}$:

$$\frac{M_{B}}{M_{B,k}^{0}/\gamma_{M}} + \left(\frac{R_{B}}{R_{B,k}^{0}/\gamma_{M}}\right)^{\epsilon} \leq 1$$

6) Interaktionsbeziehung für M_g und V:

$$\frac{M_{\text{B}}}{\text{max}M_{\text{B,k}}/\gamma_{\text{M}}} + \frac{V}{\text{max}\,V_{\text{k}}/\gamma_{\text{M}}} \leq 1,3 \quad \text{oder} \quad \frac{M_{\text{B}}}{M_{\text{B,k}}^0/\gamma_{\text{M}}} + \frac{V}{V_{\text{k}}^0/\gamma_{\text{M}}} \leq 1$$

Sind keine Werte für ${\rm M^{\circ}_{B}}$ und ${\rm R^{\circ}_{B}}$ angegeben ist kein ${\rm M_{B,k}/R_{B,k}}$ - Interaktionsnachweis zu führen.

Kalzip TR 29/124

Charakteristische Durchknöpftragfähigkeitswerte für Verbindungen nach DIN 18807

Anlage 1.1.3 zum Prüfbescheid
ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.
Prüfbescheid Nr. T12-105
Landesdirektion Leipzig
Landesstelle für Bautechnik
Leipzig, den 29.06.2012
Leiter: FREISTABearbeiter:

SACHSEN

Profiltafel in

Positivlage

Basiswert der Durchknöpfkraft Z_{0,k} in kN pro Verbindungselement in Abhängigkeit von der Blechdicke t in und dem Scheibendurchmesser d in mm. ^{1) 2)}

Nennwert der Zugfestigkeit: $R_m = 220 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,33 \text{ zu verwenden}$.

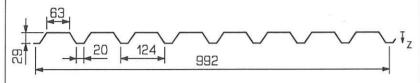
	o m			· IVI			
	Verbindung	t = 0,50	t = 0,60	t = 0,70	t = 0,80	t = 1,00	t = 1,20
	Schrauben ≥ Ø 5,5 mm mit Dichtscheiben Ø 16 mm und Kalotten EJOT ORKAN 20/34	0,610	0,732	1,50	1,79	2,31	2,58
T							
	Schrauben ≥ Ø 5,5 mm mit Dichtscheiben Ø 16 mm	0,610	0,732	0,753	0,884	1,15	1,73
- \ . T							
ē							Si .

¹⁾ Durchknöpfkraft: $Z_{I,k} = \alpha_L \cdot \alpha_M \cdot \alpha_E \cdot Z_{0,k}$

mit α_L = Beiwert zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 (α_L = 1,0 bei Befestigung am Endauflager)

 $\alpha_{_{\mathrm{M}}}$ = Beiwert zur Berücksichtigung der Werkstoffes der Dichtscheibe nach DIN 18807, Teil 6, Tabelle 3

 $\alpha_{_{\rm E}}\,$ = Beiwert zur Berücksichtigung der Anordnung der Verbindung nach DIN 18807, Teil 6, Tabelle 4


²⁾ Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.

Kalzip TR 29/124

Querschnitts- und Schubfeldwerte nach DIN 18807 Teil 6

Profiltafel in Negativlage

Maße in mm, Radien R= 4 mm

Anlage 1.2.1 zum Prüfbescheid
ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012

Nennwert der Spannung an der 0,2%- Dehngrenze: R_{p0,2} = 185 N/mm²; Zugfestigkeit R_m = 220 N/mm²

Maßge	ebende Q	uerschnitt	swerte							Grenzsti	ützweite ³⁾	
Blech-	Eigen-	Biegi	ung 1)		Norr	nalkraftbea	anspruch	ung		O O I ZOLUZWORO		
dicke	last		-	nicht redu	ızierter Q	uerschnitt	wirksan	ner Quers	schnitt ²⁾	Einfeld- träger	Mehrfeld- träger	
t	g	I _{ef}	l _{ef}	A _g	i _g	Z _g	A_{ef}	i _{ef}	Z _{ef}	l _{gr}	/ _{gr}	
mm	kN/m²	cm⁴/m	cm⁴/m	cm ² /m	cm	cm	cm²/m	cm	cm	m	m	
0,50	0,017	5,61	7,74	6,19	1,13	1,04	2,09	1,33	1,45	/		
0,60	0,020	7,11	9,55	7,43	1,13	1,04	3,00	1,31	1,45	/	/	
0,70	0,024	8,68	11,10	8,67	1,14	1,04	4,09	1,29	1,45	/		
0,80	0,027	10,30	12,70	9,91	1,15	1,04	5,26	1,27	1,43	/		
1,00	0,034	13,80	15,90	12,40	1,13	1,04	7,83	1,22	1,35	/		
1,20	0,041	17,30	19,10	14,90	1,13	1,04	10,90	1,17	1,30			

Schubfeldwerte

			$T_{3,k} = G_s/7$ $G_s = 10^4/6$	50 in kN/m '(k' ₁ +k' ₂ /L _s)	_		
t mm	L _R ⁴⁾ m	T _{1,k} ⁴⁾ kN/m	k' ₁ m/kN	k' ₂ m ² /kN	k* ₁	k [*] ₂ ⁵⁾ m²/kN	k ₃ ⁶⁾
		NVIII	TIZAL Y	TH 7KK			

- 1) Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- ²⁾ Wirksamer Querschnitt für eine konstante Druckspannung $\sigma = R_{00.2}$
- 3) Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden darf
- ⁴⁾ Für Einzelstützweiten $L_{si} \le L_R$ darf $T_{1,k}$ aus der Tabelle entnommen oder mit $(L_R/L_{si})^2$ erhöht werden; für $L_{si} > L_R$ muß $T_{1,k}$ mit $(L_R/L_{si})^2$ abgemindert werden. Für Einfeldträger ist $T_{1,k} = 2 \times Tabellenwert$.
- 5) Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = [(k_1' + k_1^* \cdot e_L) + (k_2' + k_2^*)/L_s] \cdot 10^{-1} \cdot a \cdot \text{vorh T}$$
 in mm

mit e, = Abstand der Verbindungen im Längsstoß in m

a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluss in kN/m

⁶⁾ $T \times k_3 + A \le R_{A,k} / \gamma_M$, mit $T = \gamma_F$ - facher vorhandener Schubfluss

Kalzip TR 29/124

Charakteristische Tragfähigkeitswerte nach DIN 18807

Anlage 1.2.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012 Leiter: FREISTAA Bearbeiter;

SACHSEN

Profiltafel in

Negativlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächenbelastung ¹⁾ Wennwert der Spannung an der 0,2%- Dehngrenze: $R_{p0,2} = 185 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1$ zu verwenden $\gamma_{MM} = 1,1$ zu verwenden $\gamma_{MM} = 1,1$

Blech- dicke	Feld- moment	Endaufla- gerkraft		Elastis	ch aufnehm	bare Schnit	tgrößen a	n Zwisch	enstützen ⁵⁾	
uioko	moment	goman			max. Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager- kraft
t	$M_{F,k}$	$R_{A,k}$	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
	$b_A = 40 \text{mm}^{2)}$		Z	wischena	uflagerbreit	e ³⁾	Z	wischena	auflagerbreit	te 4)
		D _A -40 mm	b	$b_B \ge 60 \text{ mm}; \epsilon = 2$			b _e	≥ 120	mm; ε=	= 2
0,50	0,519	3,87	0,534	8,64	0,534	7,73	0,534	14,01	0,534	12,53
0,60	0,735	5,76	0,773	12,88	0,773	11,52	0,773	20,87	0,773	18,67
0,70	0,919	8,04	1,065	17,98	1,065	16,08	1,065	29,15	1,065	26,07
0,80	1,115	10,71	1,269	23,96	1,269	21,43	1,269	38,84	1,269	34,74
1,00	1,536	17,25	1,586	38,57	1,586	34,50	1,586	62,53	1,586	55,93
1,20	1,999	25,38	1,903	56,75	1,903	50,76	1,903	92,00	1,903	82,29

Charakteristische Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächenbelastung ¹⁾ Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1$ zu verwenden.

Blech- dicke	Feld- moment	nent Kalottenlänge ≥ 45 mm					Verb	indung in	jedem ar	ıl <mark>i</mark> egenden	Gurt
		Endauf- lager	Z	Zwischena	auflager ⁵⁾⁷	7)	Endauf- lager	2	Zwischen	auflager ⁶⁾⁷	7)
t	$M_{F,k}$	$R_{A,k}$	M _{B,k}					$M_{B,k}^0$	V_k^0	max M _{B,k}	$\max V_{_k}$
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
0,50	0,534	7,73	0,519	8,64	0,519	7,73	16,45	0,675	21,39	0,519	16,45
0,60	0,773	11,52	0,735	12,88	0,735	11,52	23,69	0,956	30,80	0,735	23,69
0,70	1,065	16,08	0,919	17,98	0,919	16,08	32,25	1,195	41,93	0,919	32,25
0,80	1,269	21,43	1,115	23,96	1,115	21,43	42,12	1,450	54,76	1,115	42,12
1,00	1,586	34,50	1,536	38,57	1,536	34,50	57,98	1,997	75,37	1,536	57,98
1,20	1,903	50,76	1,999	56,75	1,999	50,76	69,57	2,599	90,44	1,999	69,57

- An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M_{F,k}, sondern mit dem Stützmoment max M_{B,k} für die entgegengesetzte Lastrichtung zu führen.
- 2) $b_A = \text{Endauflagerbreite}$. Bei einem Profiltafelüberstand ü [mm] $\geq s_A/t$ dürfen die $R_{A,k}$ Werte um 20% erhöht werden.
- 3) Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 4) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 5) Interaktionsbeziehung für $M_{\rm B}$ und $R_{\rm B}$:

$$\frac{M_{B}}{M_{B,k}^{0}/\gamma_{M}} + \left(\frac{R_{B}}{R_{B,k}^{0}/\gamma_{M}}\right)^{\epsilon} \leq 1$$

6) Interaktionsbeziehung für M_R und V:

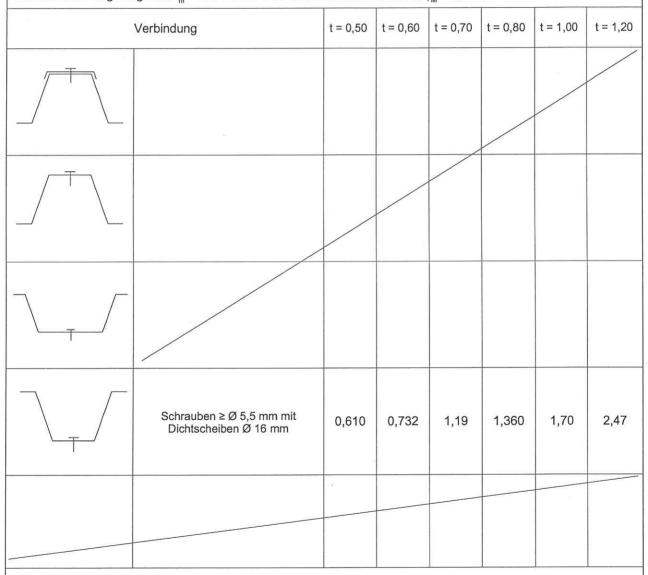
$$\frac{M_{B}}{\text{max}M_{B,k}/\gamma_{M}} + \frac{V}{\text{max}V_{k}/\gamma_{M}} \leq 1,3 \quad \text{oder} \quad \frac{M_{B}}{M_{B,k}^{0}/\gamma_{M}} + \frac{V}{V_{k}^{0}/\gamma_{M}} \leq 1$$

Sind keine Werte für M_{B}° und R_{B}° angegeben ist kein $M_{B,k}/R_{B,k}$ - Interaktionsnachweis zu führen.

Kalzip TR 29/124

Charakteristische Durchknöpftragfähigkeitswerte für Verbindungen nach DIN 18807

Anlage 1.2.3 zum Prüfbescheid
ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.
Prüfbescheid Nr. T12-105
Landesdirektion Leipzig
Landesstelle für Bautechnik
Leipzig, den 29.06.2012
Leiter: FREISTAAL Beafbeiter:


SACHSEN

Profiltafel in

Negativlage

Basiswert der Durchknöpfkraft Z_{0,k} in kN pro Verbindungselement in Abhängigkeit von der Blechdicke tin mm und dem Scheibendurchmesser d in mm. ^{1) 2)}

Nennwert der Zugfestigkeit: R_m = 220 N/mm². Als Teilsicherheitsbeiwert ist γ_M = 1,33 zu verwenden.

¹⁾ Durchknöpfkraft: $Z_{I,k} = \alpha_L \cdot \alpha_M \cdot \alpha_E \cdot Z_{0,k}$

mit α_L = Beiwert zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 (α_L = 1,0 bei Befestigung am Endauflager)

 $\alpha_{_{\rm M}}$ = Beiwert zur Berücksichtigung der Werkstoffes der Dichtscheibe nach DIN 18807, Teil 6, Tabelle 3

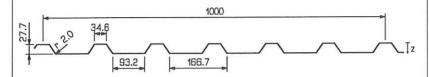
α_ε = Beiwert zur Berücksichtigung der Anordnung der Verbindung nach DIN 18807, Teil 6, Tabelle 4

²⁾ Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.

Kalzip TR 30/167

Querschnitts- und Schubfeldwerte nach DIN 18807 Teil 6

Anlage 2.1.1 zum Prüfbescheid ALS TYPENENTWURF


in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012 Leiter: FREISTAAT Bearbeiter:

SACHSEN

Profiltafel in Positivlage

Maße in mm, Radien R= 2,0 mm

Nennwert der Spannung an der 0,2%- Dehngrenze: R_{m2} = 185 N/mm²; Zugfestigkeit R_m = 220 N/mm²

Blech-	Eigen-	Biegung 1)		1 ×	Norr	nalkraftbea	anspruch	ung		Grenzsti	10 WORLD
dicke last		3	nicht redu	ızierter Qı	uerschnitt	wirksamer Querschnitt 2)			Einfeld- träger	Mehrfeld träger	
t	g	l _{ef}	l _{ef}	A _g	i _g	Z _g	A _{ef}	i _{ef}	Z _{ef}	/ _{gr}	l _{gr}
mm	kN/m²	cm4/m	cm⁴/m	cm²/m	cm	cm	cm²/m	cm	cm	m	m
0,7	0,0228	9,64	7,18	8,21	1,14	1,80	3,04	1,22	1,38	/	
0,8	0,0261	11,45	8,59	9,38	1,14	1,80	3,97	1,20	1,38	/-	/
1,0	0,0326	15,15	11,57	11,7	1,14	1,80	6,21	1,17	1,38		/
1,2	0,0392	18,29	14,73	14,1	1,14	1,80	8,94	1,14	1,38	/	
				1						/	

Schubfeldwerte

				50 in kN/m			
			$G_{s} = 10^{4}$	$/(k_1' + k_2' / L_s)$			(4.5)
t	L _R 4)	T _{1,k} 4)	k' ₁	k' ₂	k* ₁	k [*] ₂ ⁵⁾	k ₃ 6)
mm	m	kN/m	m/kN	m²/kN	kN ⁻¹	m²/kN	-

- 1) Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- ²⁾ Wirksamer Querschnitt für eine konstante Druckspannung σ = $R_{p0,2}$
- 3) Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden darf.
- 4) Für Einzelstützweiten $L_{si} \le L_R$ darf $T_{1,k}$ aus der Tabelle entnommen oder mit $(L_R/L_{si})^2$ erhöht werden; für $L_{si} > L_R$ muß $T_{1,k}$ mit $(L_R/L_{si})^2$ abgemindert werden. Für Einfeldträger ist $T_{1,k} = 2 \times Tabellenwert$.
- 5) Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = [(k_1' + k_1^* \cdot e_L) + (k_2' + k_2^*)/L_s] \cdot 10^{-1} \cdot a \cdot \text{vorh T}$$
 in mm

mit e, = Abstand der Verbindungen im Längsstoß in m

a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluss in kN/m

6) $T \times k_3 + A \le R_{A,k} / \gamma_M$, mit $T = \gamma_F$ - facher vorhandener Schubfluss

Kalzip TR 30/167

Charakteristische Tragfähigkeitswerte nach DIN 18807 Teil 6

Anlage 2.1.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012 Leiter:

Profiltafel in

Positivlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächenbelastung ¹⁾ Nennwert der Spanhung an der 0,2%- Dehngrenze: $R_{00.2} = 185 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1$ zu verwenden KTION

Blech- dicke	Feld- moment	Endaufla- gerkraft		Elastis	sch aufnehm	bare Schni	ttgrößen a	n Zwisch	enstützen ⁵⁾	
		D			max. Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager- kraft
t	$M_{F,k}$	$R_{A,k}$	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	M _{B,k}	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
	b _A = 40 mm ²				uflagerbreit	0004			auflagerbreit	
- T						= 2	$b_B \ge 60 \text{ mm}; \varepsilon = 2$			
0,70	0,752	6,70	0,690	15,0	0,690	13,4	0,690	17,4	0,690	15,6
0,80	0,925	8,87	0,842	19,8	0,842	17,7	0,842	23,0	0,842	20,6
1,00	1,31	14,1	1,19	31,6	1,19	28,3	1,19	36,7	1,19	32,8
1,20	1,76	20,7	1,58	46,2	1,58	41,3	1,58	53,7	1,58	48,0

Charakteristische Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächenbelastung ¹⁾ Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1$ zu verwenden.

Blech- dicke	Feld- moment				urt mit Kal Dicke ≥ 1		Verb		jedem ar Schraube	nliegenden je Gurt	Gurt
	9	Endauf- lager	Zwi		lager ⁵⁾⁷⁾ ε	:= 2	Endauf- lager	2	Zwischen	auflager ⁶⁾⁷	7)
t	$M_{F,k}$	$R_{A,k}$	$M_{B,k}^0$	NO. 40 AND ADDRESS OF THE PARTY				$M_{B,k}^0$	V_k^0	max M _{B,k}	max V _k
mm	kNm/m	kN/m	kNm/m	m/m kN/m kNm/m kN/m				kNm/m	kN/m	kNm/m	kN/m
0,70	0,690	6,70	0,752					0,978	31,5	0,752	24,2
0,80	0,842	8,87	0,925	20,7	0,925	18,5	31,7	1,20	41,2	0,925	31,7
1,00	1,19	14,1	1,31	32,9	1,31	29,4	41,2	1,70	53,6	1,31	41,2
1,20	1,58	20,7	1,76	48,1	1,76	43,0	49,4	2,29	64,2	1,76	49,4
							57 Au 107 Au 17				
		Y									

- An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M_{F,k}, sondern mit dem Stützmoment max M_{B,k} für die entgegengesetzte Lastrichtung zu führen.
- ²⁾ $b_A = \text{Endauflagerbreite}$. Bei einem Profiltafelüberstand ü [mm] $\geq s_w/t$ dürfen die $R_{A,k}$. Werte um 20% erhöht werden.
- ³⁾ Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 4) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 5) Interaktionsbeziehung für Ma und Ra

$$\frac{M_{B}}{M_{B,k}^{0}/\gamma_{M}} + \left(\frac{R_{B}}{R_{B,k}^{0}/\gamma_{M}}\right)^{\epsilon} \leq 1$$

6) Interaktionsbeziehung für M_B und V:

$$\frac{M_B}{max M_{B,k}/\gamma_M} + \frac{V}{max V_k/\gamma_M} \leq 1,3 \quad \text{oder} \quad \frac{M_B}{M_{B,k}^0/\gamma_M} + \frac{V}{V_k^0/\gamma_M} \leq 1$$

Sind keine Werte für ${\rm M^{\circ}_{B}}$ und ${\rm R^{\circ}_{B}}$ angegeben ist kein ${\rm M_{B,k}/R_{B,k}}$ Interaktionsnachweis zu führen.

Kalzip TR 30/167

Charakteristische Durchknöpftragfähigkeitswerte für Verbindungen nach DIN 18807

Anlage 2.1.3 zum Prüfbescheid
ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.
Prüfbescheid Nr. T12-105
Landesdirektion Leipzig
Landesstelle für Bautechnik

Leipzig den 29.06.2012 Leiter SACHSEN Bearbeiter:

Profiltafel in

Positivlage

Basiswert der Durchknöpfkraft $Z_{0,k}$ in kN pro Verbindungselement in Abhängigkeit von der Blechdicke t in mm und dem Scheibendurchmesser d in mm. ^{1) 2)}

Nennwert der Zugfestigkeit: $R_m = 220 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,33 \text{ zu verwenden}$.

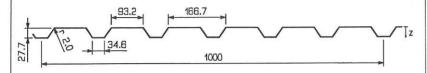
	t = 1	0,70	t = (0,80	t = 1	1,00		1,20	t :	= -	t =	=_
Verbindung				- 11				d = 19		d = -	d = -	d = -
3)	0,854	0,930	0,976	1,06	1,22	1,33	1,46	1,59				
	0,854	0,930	0,976	1,06	1,22	1,33	1,46	1,59				

- 1) Durchknöpfkraft: $Z_{I,k} = \alpha_L \cdot \alpha_M \cdot \alpha_E \cdot Z_{0,k}$
 - mit α_L = Beiwert zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 (α_L = 1,0 bei Befestigung am Endauflager)
 - $\alpha_{_{\rm M}}$ = Beiwert zur Berücksichtigung der Werkstoffes der Dichtscheibe nach DIN 18807, Teil 6, Tabelle 3
 - $\alpha_{_{\rm E}}\,$ = Beiwert zur Berücksichtigung der Anordnung der Verbindung nach DIN 18807, Teil 6, Tabelle 4
- ²⁾ Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.
- 3) Die Werte dürfen auch bei einer Verbindung mit Kalotten angesetzt werden.

Kalzip TR 30/167

Querschnitts- und Schubfeldwerte nach DIN 18807 Teil 6

Anlage 2.2.1 zum Prüfbescheid
ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.
Prüfbescheid Nr. T12-105
Landesdirektion Leipzig
Landesstelle für Bautechnik


Leipzig, den 29.06.2012 Leiter: Bearbeiter:

FREISTAAT

SACHSEN

Profiltafel in Negativlage

Maße in mm, Radien R= 2,0 mm

Nennwert der Spannung an der 0,2%- Dehngrenze: R_{n0.2} = 185 N/mm²; Zugfestigkeit R_m = 220 N/mm²

Blech-	Eigen-	Riego	ung ¹⁾		Norr	nalkraftbea	anspruchi	ına		Grenzsti	nzwene 7
dicke	last	Blegt	ung -	nicht redu	Einfeld- träger	Mehrfeld träger					
t	g	I _{ef}	l _{ef}	A _g	i _g	Z _g	A _{ef}	i _{ef}	Z _{ef}	l _{gr}	l _{gr}
mm	kN/m²	cm4/m	cm4/m	cm²/m	cm	cm	cm²/m	cm	cm	m	m
0,70	0,0228	7,18	9,64	8,21	1,14	0,97	3,04	1,22	1,38	/	/
0,80	0,0261	8,59	11,45	9,38	1,14	0,97	3,97	1,20	1,38	/	/
1,00	0,0326	11,57	15,15	11,7	1,14	0,97	6,21	1,17	1,38		/
1,20	0,0392	14,73	18,29	14,1	1,14	0,97	8,94	1,14	1,38		/ .

Schubfeldwerte

			$T_{3,k} = G_S/75$	in kN/m			
			$G_s = 10^4/6$	$(k_1' + k_2' / L_s)$			
t	L _R 4)	T _{1,k} 4)	k′ ₁	k' ₂	k*,	k [*] ₂ ⁵⁾	k ₃ ⁶⁾
mm	m	kN/m	m/kN	m²/kN	kN ⁻¹	m²/kN	-

- 1) Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- ²⁾ Wirksamer Querschnitt für eine konstante Druckspannung $\sigma = R_{00.2}$
- 3) Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden darf.
- 4) Für Einzelstützweiten $L_{si} \le L_R$ darf $T_{1,k}$ aus der Tabelle entnommen oder mit $(L_R/L_{si})^2$ erhöht werden; für $L_{si} > L_R$ muß $T_{1,k}$ mit $(L_R/L_{si})^2$ abgemindert werden. Für Einfeldträger ist $T_{1,k} = 2 \times T$ abellenwert.
- 5) Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = [(k_1' + k_1^* \cdot e_L) + (k_2' + k_2^*)/L_s] \cdot 10^{-1} \cdot a \cdot \text{vorh T}$$
 in mm

mit e, = Abstand der Verbindungen im Längsstoß in m

a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluss in kN/m

6) $T \times k_3 + A \le R_{A,k} / \gamma_M$, mit $T = \gamma_F$ - facher vorhandener Schubfluss

Kalzip TR 30/167

Charakteristische Tragfähigkeitswerte nach DIN 18807 Teil 6

Anlage 2.2.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012 FREISTAA Bearbeiter:

SACHSEN

eiter:

Profiltafel in

Negativlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächenbelastung 1) Nemwert der Spannung an der 0,2%- Dehngrenze: $R_{p0.2} = 185 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1 \text{ zu verwenden projection}$

Blech- dicke	Feld- moment	Endaufla- gerkraft		Elastis	sch aufnehm	bare Schnif	ttgrößen a	n Zwisch	enstützen ⁵⁾	
diono	momoni	gonian			max. Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager- kraft
t	$M_{F,k}$	$R_{A,k}$	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	M _{B,k}	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
		b _A = 40 mm ²⁾³⁾	Z	wischena	uflagerbreit	e ³⁾	Z	wischena	auflagerbreit	te 4)
		D _A -40 IIIII	- b _e	≥ 40	mm; ε=	: 2	b _B	≥ 60	mm; ε=	= 2
0,70	0,690	6,70	0,752	15,0	0,752	13,4	0,752	17,4	0,752	15,6
0,80	0,842	8,87	0,925	19,8	0,925	17,7	0,925	23,0	0,925	20,6
1,00	1,19	14,1	1,31	31,6	1,31	28,3	1,31	36,7	1,31	32,8
1,20	1,58	20,7	1,76	46,2	1,76	41,3	1,76	53,7	1,76	48,0

Charakteristische Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächenbelastung 1) Als Teilsicherheitsbeiwert ist $\gamma_{\rm M}$ = 1,1 zu verwenden.

Blech- dicke	Feld- moment	Verbir	ndung in je	edem anl	iegenden	Gurt	Verbir	ndung in je	edem 2. a	anliegende	n Gurt
		Endauf- lager	ē i	Zwischen	auflager 6)	Endauf- lager	4	Zwischer	nauflager ⁶	ľ.
t	$M_{F,k}$	$R_{A,k}$	M _{B,k}	V_k^0	max M _{B,k}	max R _{B,k}	$R_{A,k}$	M _{B,k}	V_k^0	max M _{B,k}	max V _k
mm	kNm/m	kN/m	kNm/m	640.50N 176A 176A 176A				kNm/m	kN/m	kNm/m	kN/m
0,70	0,752	24,2	0,897	31,5	0,690	24,2	12,1	0,449	15,7	0,345	12,1
0,80	0,925	31,7	1,095	41,2	0,842	31,7	15,9	0,547	20,6	0,421	15,9
1,00	1,31	41,2	1,55	53,6	1,19	41,2	20,6	0,774	26,8	0,595	20,6
1,20	1,76	49,4	2,05	64,2	1,58	49,4	24,7	1,03	32,1	0,790	24,7
							1				

- 1) An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment $M_{F,k}$, sondern mit dem Stützmoment max $M_{B,k}$ für die entgegengesetzte Lastrichtung zu führen.
- ²⁾ b_A = Endauflagerbreite. Bei einem Profiltafelüberstand ü [mm] $\geq s_w/t$ dürfen die $R_{A,k}$ Werte um 20% erhöht werden.
- 3) Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- Interaktionsbeziehung für M_B und R_B:

$$\frac{M_{B}}{M_{B,k}^{0}/\gamma_{M}} + \left(\frac{R_{B}}{R_{B,k}^{0}/\gamma_{M}}\right)^{\epsilon} \leq 1$$

6) Interaktionsbeziehung für M_B und V:

$$\frac{M_{B}}{\text{max}M_{B,k}/\gamma_{M}} + \frac{V}{\text{max}V_{k}/\gamma_{M}} \leq 1,3 \quad \text{oder} \quad \frac{M_{B}}{M_{B,k}^{0}/\gamma_{M}} + \frac{V}{V_{k}^{0}/\gamma_{M}} \leq 1$$

Sind keine Werte für ${\rm M^{\circ}_{B}}$ und ${\rm R^{\circ}_{B}}$ angegeben ist kein ${\rm M_{B,k}/R_{B,k}}$ Interaktionsnachweis zu führen.

Kalzip TR 30/167

Charakteristische Durchknöpftragfähigkeitswerte für Verbindungen nach DIN 18807

Anlage 2.2.3 zum Prüfbescheid
ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.
Prüfbescheid Nr. T12-105
Landesdirektion Leipzig
Landesstelle für Bautechnik
Leipzig, den 29.06.2012

SACHSEN

FREISTA Bearbeiter:

Leiter:

Profiltafel in

Negativlage

Basiswert der Durchknöpfkraft $Z_{0,k}$ in kN pro Verbindungselement in Abhängigkeit von der Blechdicke t in mm. dem Scheibendurchmesser d in mm. $^{1/2}$

Nennwert der Zugfestigkeit: $R_m = 220 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,33 \text{ zu verwenden}$.

		0,70	t = (0.80	t = 1	1,00		1,20	t =	= -	t =	: -
Verbindung			d = 16	d = 19			d = 16		d = -	d = -	d = -	d = -
3)		3										
T												
T	0,854	0,930	0,976	1,06	1,22	1,33	1,46	1,59				
-												

1) Durchknöpfkraft: $Z_{1,k} = \alpha_L \cdot \alpha_M \cdot \alpha_E \cdot Z_{0,k}$

mit α_L = Beiwert zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 (α_L = 1,0 bei Befestigung am Endauflager)

 $\alpha_{\rm M}$ = Beiwert zur Berücksichtigung der Werkstoffes der Dichtscheibe nach DIN 18807, Teil 6, Tabelle 3

 $\alpha_{_{\rm E}}\,$ = Beiwert zur Berücksichtigung der Anordnung der Verbindung nach DIN 18807, Teil 6, Tabelle 4

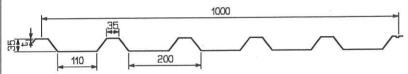
²⁾ Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.

3) Die Werte dürfen auch bei einer Verbindung mit Kalotten angesetzt werden.

Kalzip TR 35/200

Querschnitts- und Schubfeldwerte nach DIN 18807 Teil 6

Anlage 3.1.1 zum Prüfbescheid
ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.
Prüfbescheid Nr. T12-105
Landesdirektion Leipzig
Landesstelle für Bautechnik
Leipzig, den 29.06.2012


FREISTAAT

Leiter:

Beatbeiter:

Profiltafel in Positivlage

Maße in mm, Radien R= 2,5 mm

Nennwert der Spannung an der 0,2%- Dehngrenze: R_{o0.2} = 185 N/mm²; Zugfestigkeit R_m = 220 N/mm²

5		Б.	1)		Morr	nalkraftha	ancaruchi	ına		Grenzsti	atzwort.
Blech- dicke	Eigen- last	Biegi	ung ¹⁾	Normalkraftbeanspruchung nicht reduzierter Querschnitt wirksamer Querschnitt ²⁾					Einfeld- träger	Mehrfeld träger	
t	g	l _{ef}	l _{ef}	A _g	ig	Z _g	A _{ef}	i _{ef}	Z _{ef}	I _{gr}	l _{gr}
mm	kN/m²	cm⁴/m	cm⁴/m	cm ² /m	cm	cm	cm²/m	cm	cm	m	m
0,7	0,0231	16,0	16,0	8,37							
0,8	0,0263	18,0	18,0	9,56					1000		
1,0	0,0329	22,0	22,0	11,95							
1,2	0,0395	27,0	27,0	14,34							
				14							

Schubfeldwerte

			$T_{3,k} = G_S/7$ $G_S = 10^4$	750 in kN/m $\frac{1}{(k_1^{\prime} + k_2^{\prime}/L_s)}$			
t	L _R 4)	T _{1,k} 4)	k′ ₁	k′ ₂	k* ₁	k [*] ₂ ⁵⁾	k ₃ ⁶⁾
mm	m	kN/m	m/kN	m²/kN	kN ⁻¹	m²/kN	-

- 1) Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- ²⁾ Wirksamer Querschnitt für eine konstante Druckspannung $\sigma = R_{p0,2}$
- 3) Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden darf.
- ⁴⁾ Für Einzelstützweiten $L_{si} \le L_R$ darf $T_{1,k}$ aus der Tabelle entnommen oder mit $(L_R/L_{si})^2$ erhöht werden; für $L_{si} > L_R$ muß $T_{1,k}$ mit $(L_R/L_{si})^2$ abgemindert werden. Für Einfeldträger ist $T_{1,k} = 2 \times T$ abellenwert.
- 5) Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = [(k_1' + k_1^* \cdot e_1) + (k_2' + k_2^*)/L_s] \cdot 10^{-1} \cdot a \cdot \text{vorh T}$$
 in mm

mit e, = Abstand der Verbindungen im Längsstoß in m

a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluss in kN/m

⁶⁾ $T \times k_3 + A \le R_{A,k} / \gamma_{M'}$ mit $T = \gamma_F$ - facher vorhandener Schubfluss

Stand: 22. Juni 2012

Kalzip TR 35/200

Charakteristische Tragfähigkeitswerte nach DIN 18807 Teil 6

Anlage 3.1.2.1 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012 Leiter: FREISTA Bearbeiter:

SACHSEN

Profiltafel in

Positivlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächenbelastung ¹⁾ Nennwert der Spandung an der 0,2%- Dehngrenze: $R_{00.2} = 185 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1$ zu verwenden $\gamma_M = 1,1$ zu verwenden $\gamma_M = 1,1$

Blech- dicke	Feld- moment	Endaufla- gerkraft		Elastis	sch aufnehm	bare Schni	ttgrößen a	n Zwisch	enstützen ⁵⁾	
dioko	moment	gonian			max. Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager- kraft
t	$M_{F,k}$	$R_{A,k}$	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	M _{B,k}	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
		b _a =40 mm ²⁾³⁾	Z	wischena	uflagerbreit	e 3)	Z	Zwischena	auflagerbreit	te ⁴⁾
963		D _A -40 mm	b _E	≥ 40	mm; ε=	= 1	b	≥ 60	mm; ε=	= 1
0,70	0,88	7,79	1,02	16,8	0,90	6,27	0,96	38,0	0,90	7,78
0,80	1,09	8,03	1,31	18,5	1,15	7,65	1,22	34,3	1,15	9,22
1,00	1,55	12,5	1,65	34,9	1,63	11,4	1,55	101	1,55	13,5
1,20	1,87	15,0	1,98	42,1	1,97	13,7	1,87	122	1,87	16,2
	38	<i>M</i>	355							

Charakteristische Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächenbelastung $^{1)}$ Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1$ zu verwenden.

Blech- dicke	Feld- moment	Verbi		edem Gı ılänge ≥ 5	urt mit Kal 50 mm	otte	Verb		jedem ar Schraube	iliegenden je Gurt	Gurt
		Endauf- lager	Zwis	chenaufl	ager ⁵⁾⁷⁾ 8	ε = 1	Endauf- lager	Zwi	schenauf	ager ⁵⁾⁷⁾	ε = 1
t	$M_{F,k}$	$R_{A,k}$	M _{B,k}	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	$R_{A,k}$	$M_{B,k}^0$	R_k^0	max M _{B,k}	max R _{B,k}
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
0,70	0,83	2,99	0,83	20,05	0,83	5,84	5,79	0,99	47,12	0,90	8,22
0,80	1,06	3,42	1,01	24,29	1,01	7,22	9,18	1,28	41,47	1,15	9,63
1,00	1,52	5,30	1,54	22,43	1,54	9,22	12,70	1,94	26,91	1,65	11,20
1,20	1,82	6,35	1,86	27,10	1,86	11,1	15,20	2,32	32,25	1,97	13,50
											#/

- An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M_{E,k}, sondern mit dem Stützmoment max M_{B,k} für die entgegengesetzte Lastrichtung zu führen.
- 2) b_a = Endauflagerbreite. Bei einem Profiltafelüberstand ü [mm] ≥ s_w/t dürfen die R_{A,k}- Werte um 20% erhöht werden.
- Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 4) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- $^{5)}$ Interaktionsbeziehung für $M_{\rm B}$ und $R_{\rm B}$:

$$\frac{M_{B}}{M_{Bk}^{0}/\gamma_{M}} + \left(\frac{R_{B}}{R_{Bk}^{0}/\gamma_{M}}\right)^{\epsilon} \leq 1$$

6) Interaktionsbeziehung für M_B und V:

$$\frac{M_{\text{B}}}{\text{max}\,M_{\text{B},k}/\gamma_{\text{M}}} + \frac{V}{\text{max}\,V_{k}/\gamma_{\text{M}}} \, \leq \, 1,3 \quad \text{oder} \quad \frac{M_{\text{B}}}{M_{\text{B},k}^{0}/\gamma_{\text{M}}} + \frac{V}{V_{k}^{0}/\gamma_{\text{M}}} \, \leq \, 1$$

Sind keine Werte für ${\rm M^\circ_B}$ und ${\rm R^\circ_B}$ angegeben ist kein ${\rm M_{B,k}/R_{B,k^-}}$ Interaktionsnachweis zu führen.

Kalzip TR 35/200

Charakteristische Tragfähigkeitswerte nach DIN 18807 Teil 6

Anlage 3.1.2.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.96.2012 Leiter: FREISTAAT Bearbeiter:

SACHSEN

Profiltafel in Positivlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächenbelastung ¹⁾ Vennwert der Spannung an der 0,2%- Dehngrenze: $R_{p0.2} = 185 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1 \text{ zu verwenden}_{p1.110}$

Blech- dicke	Feld- moment	Endaufla- gerkraft		Elastis	ch aufnehm	bare Schnit	tgrößen a	n Zwisch	enstützen ⁵⁾	
dicke	moment	gorkraft			max. Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager- kraft
t	$M_{F,k}$	$R_{A,k}$	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
		$b_{\Delta} = 40 \text{mm}^{2/3}$	Z	wischena	uflagerbreit	e ³⁾	Z	Zwischena	auflagerbreit	te 4)
		D _A 40 mm	b _e	≥ 40	mm; ε=	= 1	b _e	≥ 60	mm; ε=	: 1
0,70	0,88	7,79	1,02	16,8	0,90	6,27	0,96	38,0	0,90	7,78
0,80	1,09	8,03	1,31	18,5	1,15	7,65	1,22	34,3	1,15	9,22
1,00	1,55	12,5	1,65	34,9	1,63	11,4	1,55	101	1,55	13,5
1,20	1,87	15,0	1,98	42,1	1,97	13,7	1,87	122	1,87	16,2
ä	307		sit.	ti:						

Charakteristische Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächenbelastung ¹⁾ Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1$ zu verwenden.

Blech- dicke	Feld- moment	Verbir		edem anl hrauben	iegenden je Gurt	Gurt	Verb		jedem ar Schraube	iliegenden je Gurt	Gurt
		Endauf- lager	Zwis	schenauf	lager 5)7)	ε = -	Endauf- lager	Zwi	schenaufl	lager ⁵⁾⁷⁾	ε = 1
t	$M_{F,k}$	$R_{A,k}$	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	$\max R_{_{B,k}}$	$R_{A,k}$	$M_{B,k}^0$	R_k^0	max M _{B,k}	max R _{B,k}
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
0,70	0,83	5,70	(100)	7.5	0,86	11,4	5,79	0,99	47,12	0,90	8,22
0,80	1,06	5,82	- "	-	1,10	11,6	9,18	1,28	41,47	1,15	9,63
1,00	1,52	8,48	_	-	1,57	17,0	12,70	1,94	26,91	1,65	11,20
1,20	1,82	10,20	_	_	1,89	20,4	15,20	2,32	32,25	1,97	13,50

- 1) An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M_{E,k}, sondern mit dem Stützmoment max M_{B,k} für die entgegengesetzte Lastrichtung zu führen.
- 2) $b_a = \text{Endauflagerbreite}$. Bei einem Profiltafelüberstand ü [mm] $\geq s_w/t$ dürfen die $R_{A,k}$ Werte um 20% erhöht werden.
- 3) Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 4) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- $^{5)}$ Interaktionsbeziehung für $M_{\scriptscriptstyle B}$ und $R_{\scriptscriptstyle B}$:

$$\frac{M_{B}}{M_{Bk}^{0}/\gamma_{M}} + \left(\frac{R_{B}}{R_{Bk}^{0}/\gamma_{M}}\right)^{\epsilon} \leq 1$$

6) Interaktionsbeziehung für M_B und V:

$$\frac{M_{\text{B}}}{\text{max}M_{\text{B,k}}/\gamma_{\text{M}}} + \frac{V}{\text{max}\,V_{\text{k}}/\gamma_{\text{M}}} \, \leq \, 1,3 \quad \text{oder} \quad \frac{M_{\text{B}}}{M_{\text{B,k}}^0/\gamma_{\text{M}}} + \frac{V}{V_{\text{k}}^0/\gamma_{\text{M}}} \, \leq \, 1$$

Sind keine Werte für M_B^o und R_B^o angegeben ist kein $M_{B,k}/R_{B,k}$. Interaktionsnachweis zu führen.

Kalzip TR 35/200

Charakteristische Durchknöpftragfähigkeitswerte für Verbindungen nach DIN 18807

Anlage 3.1.3 zum Prüfbescheid ALS TYPENENTWURF in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig Landesstelle für Bautechnik Leipzig, den 29.06.2012 ter: FREISIGEN Bearbe ACHSEN Bear peiter:

Leiter:

Profiltafel in

Positivlage

Basiswert der Durchknöpfkraft Z_{o,k} in kN pro Verbindungselement in Abhängigkeit von der Blechdicke und dem Scheibendurchmesser d in mm. 1) 2)

Nennwert der Zugfestigkeit: $R_m = 220 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,33 \text{ zu verwenden}$.

Manhindron	Stützweite	t = (0,70	t = (0,80	t = 1	1,00	t =	1,20	t =	=-
Verbindung	L in m	d = 16	d = 19	d = 16	d = 19	d = 16	d = 19	d = 16	d = 19	d = -	d = -
3)		0,894	-	1,11	-	1,41	-	1,69	1		
		0,854	0,93	0,98	1,06	1,22	1,33	1,46	1,59		
	Endauflager	-	1,23	-	2,03	-	2,79		3,34	-	-
	1,00	-	1,44	-	1,71	-	1,96		2,35	(E	-
	1,50	-	=	19	Ħ	=	-	8-	-	-	-
	2,00	-	0,778	-	0,966	-	1,24	.=	1,49	-	-
T T	3,00	-	0,653	-	0,808	=	1,09		1,31	-	-
	4,00	- 1	0,481	-	0,602	-	0,857	-	1,03	-	-
	Endauflager	-	2,05	-	2,17	÷.	3,07	-	3,68		-
	1,00	-	2,05	-	2,17		3,07	-	3,68	-	-
	1,50	-	-	-	-	-		-		-	-
	2,00	3	0,782	-	1,07	4 3	1,63	-	1,95	-	-
\T-T'	3,00	-	0,516	-	0,669	-	0,947	-	1,14	-	-
	4,00	-	0,395	-	0,501	-	0,712	-	0,855	-	-
			224								

1) Durchknöpfkraft: $Z_{I,k} = \alpha_L \cdot \alpha_M \cdot f_{bA} \cdot Z_{0,k}$

mit α_L = Beiwert zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 (α_L = 1,0 bei Befestigung am Endauflager)

 $\alpha_{_{\rm M}}$ = Beiwert zur Berücksichtigung der Werkstoffes der Dichtscheibe nach DIN 18807, Teil 6, Tabelle 3

 f_{bA} = Beiwert zur Berücksichtigung der Anordnung der Verbindung nach DIN 18807, Teil 7, Tabelle 3

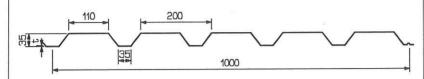
2) Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.

3) Kalotten siehe Anlage 8

Kalzip TR 35/200

Querschnitts- und Schubfeldwerte nach DIN 18807 Teil 6

Anlage 3.2.1 zum Prüfbescheid
ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.
Prüfbescheid Nr. T12-105
Landesdirektion Leipzig
Landesstelle für Bautechnik
Leipzig, den 29.06.2012


FREISTAAT

Bearbeiter:

Leiter:

Profiltafel in Negativlage

Maße in mm, Radien R= 2,5 mm

Nennwert der Spannung an der 0,2%- Dehngrenze: R_{p0,2} = 185 N/mm²; Zugfestigkeit R_m = 220 N/mm²

Malsge	ebende Q	uerschnitt	swerte							Grenzsti	ützweite 3)
Blech-	Eigen-	Biego	ung 1)		Norn	nalkraftbea	anspruch	ung			
dicke	last			nicht reduzierter Querschnitt wirksamer Querschnitt 2)						Einfeld- träger	Mehrfeld- träger
t	g	l _{ef}	l _{ef}	A _g	i _g	Z _g	A_{ef}	i _{ef}	Z _{ef}	l _{gr}	l _{gr}
mm	kN/m²	cm⁴/m	cm⁴/m	cm ² /m	cm	cm	cm ² /m	cm	cm	m	m
0,70	0,0231	16,0	16,0	8,37							
0,80	0,0263	18,0	18,0	9,56							
1,00	0,0329	22,0	22,0	11,95							
1,20	0,0395	27,0	27,0	14,34							

Schubfeldwerte

			$T_{3,k} = G_S/7$ $G_S = 10^4$	(50 in kN/m) $((k'_1 + k'_2 / L_s))$			
t	L _R 4)	T _{1,k} 4)	k' ₁	k/ ₂ m²/kN	k* ₁ kN ⁻¹	k [*] ₂ ⁵⁾ m²/kN	k ₃ ⁶⁾
mm	m	kN/m	m/kN	III-7KIN	KIN	III /KIN	
	<						

- 1) Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- ²⁾ Wirksamer Querschnitt für eine konstante Druckspannung $\sigma = R_{00.2}$
- 3) Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden darf.
- 4) Für Einzelstützweiten $L_{si} \le L_R$ darf $T_{1,k}$ aus der Tabelle entnommen oder mit $(L_R/L_{si})^2$ erhöht werden; für $L_{si} > L_R$ muß $T_{1,k}$ mit $(L_R/L_{si})^2$ abgemindert werden. Für Einfeldträger ist $T_{1,k} = 2 \times T$ abellenwert.
- 5) Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = [(k_1' + k_1^* \cdot e_L) + (k_2' + k_2^*)/L_s] \cdot 10^{-1} \cdot a \cdot \text{vorh T}$$
 in mm

mit e₁ = Abstand der Verbindungen im Längsstoß in m

a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluss in kN/m

6) $T \times k_3 + A \le R_{A,k} / \gamma_M$, mit $T = \gamma_F$ - facher vorhandener Schubfluss

Kalzip TR 35/200

Charakteristische Tragfähigkeitswerte nach DIN 18807 Teil 6

Anlage 3.2.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012 FREISTAA Bearbeiter:

Leiter:

Profiltafel in Negativlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächenbelastung 1) Nennwert der Spannung an der 0,2%- Dehngrenze: $R_{00.2} = 185 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1 \text{ zu verwenden}$.

Blech- dicke	Feld- moment	Endaufla- gerkraft		Elastis	ch aufnehm	bare Schnit	ttgrößen a	n Zwisch	enstützen ⁵⁾	
dioito	momone	goman	e e		max. Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager- kraft
t	$M_{F,k}$	$R_{A,k}$	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	M _{B,k}	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
		b _A = 40 mm ²⁾³⁾	Z	wischena	uflagerbreit	e 3)	Z	wischena	auflagerbreit	te 4)
		D _A = 40 mm	b _e	≥ 40	mm; ε=	= 1	b _e	≥ 60	mm; ε=	= 1
0,70	0,83	7,79	1,20	12,72	0,93	6,27	0,93	58,5	0,93	8,05
0,80	1,06	8,03	1,30	18,53	1,17	7,52	1,17	41,0	1,17	9,12
1,00	1,52	12,5	1,81	30,37	1,68	11,30	1,68	63,2	1,68	13,4
1,20	1,82	15,0	2,16	36,29	2,02	13,50	2,02	75,8	2,02	16,0

Charakteristische Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächenbelastung 1) Als Teilsicherheitsbeiwert ist $\gamma_{M} = 1,1$ zu verwenden.

Blech- dicke	Feld- moment	Verbi	ndung in j Kalotten	edem Gı länge≥5		otte	Verb		jedem ar Schraube	nliegenden je Gurt	Gurt
		Endauf- lager	Z	Zwischena	auflager ⁵⁾	7)	Endauf- lager	Zwis		lager ⁵⁾⁷⁾ 8	
t	M _{F,k}	$R_{A,k}$	M _{B,k}	R_k^0	max M _{B,k}	max R _{B,k}	R _{A,k}	$M_{B,k}^0$	R_k^0	max M _{B,k}	$\max R_{_{B,k}}$
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
0,70	0,880		-				7,66	0,91	103	0,91	8,56
0,80	1,090						9,79	1,07	153	1,07	9,78
1,00	1,55						14,0	1,47	101	1,47	12,6
1,20	1,87						16,8	1,78	121	1,78	15,1

- 1) An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment $M_{E,k}$, sondern mit dem Stützmoment max $M_{B,k}$ für die entgegengesetzte Lastrichtung zu führen.
- 2) $b_{A} = \text{Endauflagerbreite}$. Bei einem Profiltafelüberstand ü [mm] $\geq s_{A}/t$ dürfen die $R_{A,k}$ Werte um 20% erhöht werden.
- 3) Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- Interaktionsbeziehung für M_B und R_B:

$$\frac{M_B}{M_B^0 \nu/\gamma_H} + \left(\frac{R_B}{R_B^0 \nu/\gamma_H}\right)^{\epsilon} \le 1$$

6) Interaktionsbeziehung für M_B und V:

$$\frac{M_{\text{B}}}{\text{max}M_{\text{B},k}/\gamma_{\text{M}}} + \frac{V}{\text{max}V_{\text{k}}/\gamma_{\text{M}}} \leq 1,3 \quad \text{oder} \quad \frac{M_{\text{B}}}{M_{\text{B},k}^0/\gamma_{\text{M}}} + \frac{V}{V_{\text{k}}^0/\gamma_{\text{M}}} \leq 1$$

Sind keine Werte für M_{B}° und R_{B}° angegeben ist kein $M_{B,r}/R_{B,r}$ Interaktionsnachweis zu führen.

7) Bei Verbindung in jedem 2. Gurt müssen die angegebenen Werte halbiert werden.

Stand: 22. Juni 2012

Kalzip TR 35/200

Charakteristische Durchknöpftragfähigkeitswerte für Verbindungen nach DIN 18807

Anlage 3.2.3 zum Prüfbescheid
ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.
Prüfbescheid Nr. T12-105
Landesdirektion Leipzig
Landesstelle für Bautechnik
Leipzig, den 29.06:2012

Leipzig, den 29.06.2012 eiter: FREISTAA Bearbeiter: SACHSEN

Profiltafel in

Negativlage

Basiswert der Durchknöpfkraft Z_{0,k} in kN pro Verbindungselement in Abhängigkeit von der Blechdicke tynnmund dem Scheibendurchmesser d in mm. ^{1) 2)}

Nennwert der Zugfestigkeit: $R_m = 220 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,33 \text{ zu verwenden}$.

Manalaina di una m	Stützweite	t = (0,70	t = 0	0,80	t = '	1,00	t =	1,20	t =	= -
Verbindung	L in m	d = 16	d = 19	d = -	d = -						
				,							
T			2								
T											
	Endauflager	-	1,40	-	1,87	-	2,12	2.5	2,50	-	-
\neg	1,00	-	1,38	-	1,56	1.5	2,01	-	2,42	-	
	1,50	_	-	-	-	-	-	-	-	-	
\/	2,00	-	0,845	-	0,970	-	1,31	10-	1,67	-	(5)
1	3,00	-	0,571	-	0,659	-	0,894	:=	1,07	-	-
	4,00	-	0,430	-	0,497		0,679		0,814	-	-
	1,00										

1) Durchknöpfkraft: $Z_{I, k} = \alpha_L \cdot \alpha_M \cdot f_{bA} \cdot Z_{0, k}$

mit α_L = Beiwert zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 (α_L = 1,0 bei Befestigung am Endauflager)

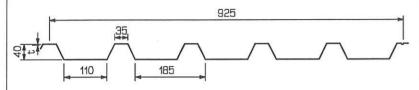
 $\alpha_{_{M}}$ = Beiwert zur Berücksichtigung der Werkstoffes der Dichtscheibe nach DIN 18807, Teil 6, Tabelle 3

 $\rm f_{bA}^{}$ = Beiwert zur Berücksichtigung der Anordnung der Verbindung nach DIN 18807, Teil 7, Tabelle 3

²⁾ Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.

Kalzip TR 40/185

Querschnitts- und Schubfeldwerte nach DIN 18807 Teil 6


Anlage 4.1.1 zum Prüfbescheid
ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.
Prüfbescheid Nr. T12-105
Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012 Leiter: FREISTAA Bearbeiter:

SACHSEN

Profiltafel in Positivlage

Maße in mm, Radien R= 2,5 mm

Nennwert der Spannung an der 0,2%- Dehngrenze: R_{o0.2} = 185 N/mm²; Zugfestigkeit R_m = 220 N/mm²

Blech-	Eigen-	Bieau	ung ¹⁾		Norr	nalkraftbea	anspruch	ung		Cienzsu	ützweite ³
dicke	last		9	nicht redu	uzierter Q	schnitt ²⁾	Einfeld- träger	Mehrfeld träger			
t	g	l _{ef}	l _{ef}	A _g	i _g	Z _g	A _{ef}	i _{ef}	Z _{ef}	I _{gr}	l _{gr}
mm	kN/m²	cm4/m	cm⁴/m	cm²/m	cm	cm	cm²/m	cm	cm	m	m
0,7	0,0249	22,6	22,6	9,05							
0,8	0,0285	25,8	25,8	10,34							
1,0	0,0355	32,3	32,3	12,92							
1,2	0,0427	38,8	38,8	15,51							

Schubfeldwerte

			$T_{3,k} = G_S/75$	50 in kN/m			
			$G_{s} = 10^{4}$	$(k_1' + k_2' / L_s)$			
t	L _R 4)	T _{1,k} 4)	k' ₁	k′2	k* ₁	k [*] ₂ ⁵⁾	k ₃ ⁶⁾
mm	m	kN/m	m/kN	m²/kN	kN ⁻¹	m²/kN	

- 1) Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- ²⁾ Wirksamer Querschnitt für eine konstante Druckspannung $\sigma = R_{p0.2}$
- 3) Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden darf.
- ⁴⁾ Für Einzelstützweiten $L_{s_i} \le L_R$ darf $T_{1,k}$ aus der Tabelle entnommen oder mit $(L_R/L_{s_i})^2$ erhöht werden; für $L_{s_i} > L_R$ muß $T_{1,k}$ mit $(L_R/L_{s_i})^2$ abgemindert werden. Für Einfeldträger ist $T_{1,k} = 2 \times Tabellenwert$.
- 5) Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = [(k_1' + k_1^* \cdot e_L) + (k_2' + k_2^*)/L_s] \cdot 10^{-1} \cdot a \cdot \text{vorh T}$$
 in mm

mit e, = Abstand der Verbindungen im Längsstoß in m

a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluss in kN/m

6) $T \times k_3 + A \le R_{A,k} / \gamma_M$, mit $T = \gamma_F$ - facher vorhandener Schubfluss

Kalzip TR 40/185

Charakteristische Tragfähigkeitswerte nach DIN 18807 Teil 6

Anlage 4.1.2.1 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012 Leiter: FREISTAAT Bearbeiter:

Profiltafel in

Positivlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächenbelastung Mennwert der Spannung an der 0,2%- Dehngrenze: $R_{p0,2} = 185 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1 \text{ zu verwenden 10}$

Blech- dicke	Feld- moment	Endaufla- gerkraft		Elastis	ch aufnehm	nbare Schni	tgrößen a	n Zwisch	enstützen ⁵⁾	
diono	momone	gonnan			max. Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager- kraft
t	$M_{F,k}$	$R_{A,k}$	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	M _{B,k}	$R_{B,k}^0$	max M _{B,k}	$\max R_{\scriptscriptstyle{B,k}}$
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
		b _A =40 mm ²⁾³⁾	Z	wischena	uflagerbreit	e 3)	Z	Zwischena	auflagerbrei	:e ⁴⁾
31		D _A -40 mm	b _e	≥ 40	mm; ε=	= 1	b _e	≥ 60	mm; ε=	= 1
0,70	1,15	7,84	1,04	42,3	1,04	7,14	1,25	24,5	1,25	8,29
0,80	1,46	10,7	1,38	52,2	1,38	9,60	1,71	28,2	1,71	10,6
1,00	2,19	16,0	1,97	88,8	1,97	14,2	2,34	45,8	2,34	15,4
1,20	2,62	19,2	2,34	105	2,34	17,0	2,80	54,9	2,80	18,5
	12.									

Charakteristische Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächenbelastung ¹⁾ Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1$ zu verwenden.

Blech- dicke	Feld- moment	Verbi		edem G ılänge ≥ :	urt mit Kal 50 mm	otte	Verb		jedem ar Schraube	iliegenden je Gurt	Gurt
		Endauf- lager	Zwis	chenaufl	ager ⁵⁾⁷⁾ 8	: = 1	Endauf- lager	Zwis	schenaufl	ager ⁵⁾⁷⁾ 8	ε = 1
t	M _{F,k}	$R_{A,k}$	M _{B,k}	20 20 70 80 14 80000				$M_{B,k}^0$	R_k^0	max M _{B,k}	max R _{B,k}
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
0,70	1,15	6,61	-	-	0,94	8,13	6,61	1,17	92,5	1,17	7,78
0,80	1,42	8,54	-	 ?	1,17	10,2	8,54	1,54	44,4	1,54	8,94
1,00	1,95	12,80	1,84	77,5	1,84	14,0	12,80	3,30	20,7	2,37	12,40
1,20	2,34	15,40	2,21 92,9 2,21 16,8				15,40	3,95	24,9	2,85	14,80

- 1) An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M_{E,k}, sondern mit dem Stützmoment max M_{B,k} für die entgegengesetzte Lastrichtung zu führen.
- 2) $b_A = \text{Endauflagerbreite}$. Bei einem Profiltafelüberstand ü [mm] $\geq s_w/t$ dürfen die $R_{A,k}$ Werte um 20% erhöht werden.
- ³⁾ Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 4) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 5) Interaktionsbeziehung für Mg und Rg

$$\frac{M_{B}}{M_{B,k}^{0}/\gamma_{M}} + \left(\frac{R_{B}}{R_{B,k}^{0}/\gamma_{M}}\right)^{\epsilon} \leq 1$$

6) Interaktionsbeziehung für M_B und V:

$$\frac{M_{B}}{\max M_{B,k}/\gamma_{M}} + \frac{V}{\max V_{k}/\gamma_{M}} \leq 1,3 \quad \text{oder} \quad \frac{M_{B}}{M_{B,k}^{0}/\gamma_{M}} + \frac{V}{V_{k}^{0}/\gamma_{M}} \leq 1$$

Sind keine Werte für ${\rm M^{\circ}_{B}}$ und ${\rm R^{\circ}_{B}}$ angegeben ist kein ${\rm M_{B,k}/R_{B,k}}$ - Interaktionsnachweis zu führen.

Kalzip TR 40/185

Charakteristische Tragfähigkeitswerte nach DIN 18807 Teil 6

Anlage 4.1.2.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012 Leiter: FREISTAAL Bearbeiter: SACHSEN

Profiltafel in

Positivlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächenbelastung ¹⁾ Negnwert der Spannung an der 0,2%- Dehngrenze: $R_{00.2} = 185 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1$ zu verwenden $\chi = 1,0$

Blech-	Feld-	Endaufla-		Elastis	ch aufnehm	bare Schnif	tgrößen a	n Zwisch	enstützen ⁵⁾	
dicke	moment	gerkraft			max. Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager- kraft
t	$M_{F,k}$	R _{A,k}	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	$\max R_{_{B,k}}$
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
		b _A = 40 mm ²⁾³⁾	Z	wischena	uflagerbreit	e 3)			auflagerbreit	e 4)
		D _A -40111111	b _e	≥ 40	mm; ε=	= 1	b _E	≥ 60	mm; ε=	: 1
0,70	1,15	7,84	1,04	42,3	1,04	7,14	1,25	24,5	1,25	8,29
0,80	1,46	10,7	1,38	52,2	1,38	9,60	1,71	28,2	1,71	10,6
1,00	2,19	16,0	1,97	88,8	1,97	14,2	2,34	45,8	2,34	15,4
1,20	2,62	19,2	2,34	105	2,34	17,0	2,80	54,9	2,80	18,5
	5900		φ.		95					
		=								J.,

Charakteristische Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächenbelastung $^{1)}$ Als Teilsicherheitsbeiwert ist $\gamma_{M} = 1,1$ zu verwenden.

Blech- dicke	Feld- moment	Verbir	ndung in je mit 2 Sc	edem anli hrauben		Gurt	Verb		jedem ar Schraube	liegenden je Gurt	Gurt
		Endauf- lager	Zwis	chenaufl	ager ⁵⁾⁷⁾ 8	s = 1	Endauf- lager	Zwis	schenaufl	ager ⁵⁾⁷⁾ 8	c = 1
t	$M_{F,k}$	$R_{A,k}$	M _{B,k}	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	$R_{A,k}$	$M_{B,k}^0$	R_k^0	max M _{B,k}	$\max R_{\scriptscriptstyle{B,k}}$
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
0,70	1,15	6,61	1,23	118,0	1,23	11,00	6,61	1,17	92,50	1,17	7,78
0,80	1,42	8,54	1,46	139,0	1,46	12,80	8,54	1,54	44,40	1,54	8,94
1,00	1,95	12,80	2,80	69,2	2,11	19,90	12,80	3,30	20,70	2,37	12,40
1,20	2,34	15,40	3,34	82,6	2,53	23,9	15,40	3,95	24,90	2,85	14,80

- An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M_{E,k}, sondern mit dem Stützmoment max M_{B,k} für die entgegengesetzte Lastrichtung zu führen.
- 2) $b_A = \text{Endauflagerbreite}$. Bei einem Profiltafelüberstand ü [mm] $\geq s_w/t$ dürfen die $R_{A,k}$. Werte um 20% erhöht werden.
- ³⁾ Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 4) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 5) Interaktionsbeziehung für M_B und R_B:

$$\frac{M_B}{M_{B,k}^0/\gamma_M} + \left(\frac{R_B}{R_{B,k}^0/\gamma_M}\right)^{\epsilon} \le 1$$

6) Interaktionsbeziehung für M_B und V:

$$\frac{M_{B}}{\text{max}M_{B,k}/\gamma_{M}} + \frac{V}{\text{max}V_{k}/\gamma_{M}} \leq 1,3 \quad \text{oder} \quad \frac{M_{B}}{M_{B,k}^{0}/\gamma_{M}} + \frac{V}{V_{k}^{0}/\gamma_{M}} \leq 1$$

Sind keine Werte für M_B° und R_B° angegeben ist kein $M_{B,k}/R_{B,k}$ - Interaktionsnachweis zu führen.

Kalzip TR 40/185

Charakteristische Durchknöpftragfähigkeitswerte für Verbindungen nach DIN 18807

Anlage 4.1.3 zum Prüfbescheid
ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.
Prüfbescheid Nr. T12-105
Landesdirektion Leipzig
Landesstelle für Bautechnik
Leipzig, den 29.06.2012
Leiter: FREISTAAT
Bearbeiter:

ACHSEN

Profiltafel in Positivlage

Basiswert der Durchknöpfkraft Z_{0,k} in kN pro Verbindungselement in Abhängigkeit von der Blechdicke in mm und dem Scheibendurchmesser d in mm. ^{1) 2)}

Nennwert der Zugfestigkeit: $R_m = 220 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,33 \text{ zu verwenden}$.

V/ I: I	Stützweite	t = 0	0,70	t = (0,80	t = :	1,00	t =	1,20	t =	= -
Verbindung	L in m	d = 16	d = 19	d = 16	d = 19	d = 16	d = 19	d = 16	d = 19	d = -	d = -
3)		1,36	,	1,69	æ	2,35	-	2,81	-		
		0,854	0,930	0,976	1,06	1,22	1,33	1,46	1,59	-	-
	Endauflager	(#)	1,57	i s	2,01	-	2,95	=	3,53	-	-
	1,00	-	1,17	7=	1,35	-	1,86	-	2,25	-	10
	1,50	-	-	87		D H		-	•	-	1 4
	2,00	-	0,821	-	0,992	-	1,39	-	1,68	(4).	-
T	3,00	-	0,673	o m	0,829	1.77.	1,30	-	1,56	•	-
	4,00	-	0,501	-	0,641	-	1,06	-	1,28		-
	Endauflager	-	1,86	-	2,14		3,33	-	3,99	-	-
	1,00	-	1,86	-	2,14	in	3,33	-	3,99	-	-
	1,50	-	-	-	-	-	-	-	-	-	-
\ /	2,00	-	0,978	-	1,14		1,77	-	2,12	-	-
	3,00	114	0,665	-	0,774	-	1,19	-	1,42	-	-
	4,00	-	0,493	-	0,579	-	0,868	% =	1,04	-	-
-											

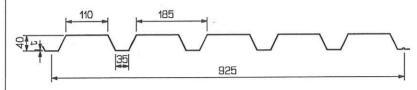
1) Durchknöpfkraft: $Z_{\text{I, k}} = \alpha_{\text{L}} \cdot \alpha_{\text{M}} \cdot f_{\text{bA}} \cdot Z_{\text{0,k}}$

mit α_L = Beiwert zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 (α_L = 1,0 bei Befestigung am Endauflager)

 $\alpha_{_{\rm M}}$ = Beiwert zur Berücksichtigung der Werkstoffes der Dichtscheibe nach DIN 18807, Teil 6, Tabelle 3

f_{ba} = Beiwert zur Berücksichtigung der Anordnung der Verbindung nach DIN 18807, Teil 7, Tabelle 3

²⁾ Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.


3) Kalotten siehe Anlage 8

Kalzip TR 40/185

Querschnitts- und Schubfeldwerte nach DIN 18807 Teil 6

Profiltafel in Negativlage

Maße in mm, Radien R= 2,5 mm

Anlage 4.2.1 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig Landesstelle für Bautechnik

Nennwert der Spannung an der 0,2%- Dehngrenze: R_{p0,2}= 185 N/mm²; Zugfestigkeit R_m= 220 N/mm²

			erschnittswerte Biegung ¹⁾ Normalkraftbeanspruchung								ützweite ³⁾
Blech- dicke	Eigen- last	Biegi	ung "	nicht redu	Victor Agreem	uerschnitt		ner Quer	schnitt ²⁾	Einfeld- träger	Mehrfeld träger
t	g	l _{ef}	l _{ef}	A _g	i _g	Z _g	A _{ef}	i _{ef}	Z _{ef}	l _{gr}	l _{gr}
mm	kN/m²	cm⁴/m	cm⁴/m	cm²/m	cm	cm	cm²/m	cm	cm	m	m
0,70	0,0249	22,6	22,6	9,05							
0,80	0,0285	25,8	25,8	10,34							
1,00	0,0355	32,3	32,3	12,92							
1,20	0,0427	38,8	38,8	15,51							
		7947)									

Schubfeldwerte

			$T_{3,k} = G_{S}/75$	50 in kN/m			
			$G_{s} = 10^{4}$	$(k_1' + k_2' / L_s)$			
t	L _R 4)	T _{1,k} 4)	k′ ₁	k′ ₂	k* ₁	k*2 ⁵⁾	k ₃ ⁶⁾
mm	m	kN/m	m/kN	m²/kN	kN ⁻¹	m²/kN	-

- 1) Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- ²⁾ Wirksamer Querschnitt für eine konstante Druckspannung $\sigma = R_{p0,2}$
- 3) Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden darf.
- 4) Für Einzelstützweiten $L_{s_i} \le L_R$ darf $T_{1,k}$ aus der Tabelle entnommen oder mit $(L_R/L_{s_i})^2$ erhöht werden; für $L_{s_i} > L_R$ muß $T_{1,k}$ mit $(L_R/L_{s_i})^2$ abgemindert werden. Für Einfeldträger ist $T_{1,k} = 2 \times T$ abellenwert.
- 5) Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = [(k_1' + k_1^* \cdot e_L) + (k_2' + k_2^*)/L_s] \cdot 10^{-1} \cdot a \cdot \text{vorh T}$$
 in mn

mit e, = Abstand der Verbindungen im Längsstoß in m

a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluss in kN/m

6) $T \times k_3 + A \le R_{A,k} / \gamma_M$, mit $T = \gamma_F$ -facher vorhandener Schubfluss

Kalzip TR 40/185

Charakteristische Tragfähigkeitswerte nach DIN 18807 Teil 6

Anlage 4.2.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.20/12 FREISTAAT Bearbeiter:

SACHSEN

Profiltafel in

Negativlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächenbelastung 1) Nennwert der Spannung an der 0,2%- Dehngrenze: $R_{\rm max}$ = 185 N/mm². Als Teilsicherheitsbeiwert ist $\gamma_{\rm M}$ = 1,1 zu verwenden.

Blech- dicke	Feld- moment	Endaufla- gerkraft		Elastis	sch aufnehm	bare Schnit	tgrößen a	n Zwisch	enstützen ⁵⁾	
uicito	moment	gontar			max. Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager- kraft
t	$M_{F,k}$	$R_{A,k}$	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
		$b_{\Delta} = 40 \text{mm}^{2/3}$	Z	wischena	auflagerbreit	e 3)	Z	Zwischena	auflagerbreit	te 4)
		D _A -40 mm ·	b,	₃ ≥ 40	mm; ε=	= 1	b _e	≥ 60	mm; ε=	: 1
0,70	1,15	7,79	1,12	16,2	1,12	6,62	1,15	22,2	1,15	7,60
0,80	1,42	8,03	1,41	31,7	1,41	9,73	1,65	23,7	1,65	10,5
1,00	1,95	12,5	2,08	48,9	2,08	14,6	2,24	41,9	2,24	14,6
1,20	2,34	15,0	2,50	58,7	2,50	17,5	2,69	50,3	2,69	17,5

Charakteristische Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächenbelastung 1) Als Teilsicherheitsbeiwert ist $\gamma_{\rm M}$ = 1,1 zu verwenden.

Blech- dicke	Feld- moment	Verbi		edem G länge≥5	urt mit Kal 50 mm	otte	Verb		jedem ar Schraube	nliegenden je Gurt	Gurt
		Endauf- lager	Z	Zwischen	auflager 5)?	7)	Endauf- lager	2	Zwischen	auflager ⁵⁾	7)
t	$M_{F,k}$	$R_{A,k}$	M _{B,k}	R_k^0	max M _{B,k}	$\max R_{_{B,k}}$	R _{A,k}	$M_{B,k}^0$	R_k^0	max M _{B,k}	max R _{B,k}
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
0,70	1,15					/	7,70	1,09	39,1	1,09	8,29
0,80	1,46						9,68	1,57	22,7	1,57	9,34
1,00	2,19						14,7	2,29	35,2	2,29	13,5
1,20	2,62						17,7	2,75	42,4	2,75	16,2

- An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment $M_{E,k}$, sondern mit dem Stützmoment max $M_{B,k}$ für die entgegengesetzte Lastrichtung zu führen.
- 2) $b_A = \text{Endauflagerbreite}$. Bei einem Profiltafelüberstand ü [mm] $\geq s_w/t$ dürfen die $R_{A,k}$ Werte um 20% erhöht werden.
- 3) Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- Interaktionsbeziehung für M_B und R_B:

6) Interaktionsbeziehung für M_B und V:

$$\frac{M_{B}}{M_{B,k}^{0}/\gamma_{M}} + \left(\frac{R_{B}}{R_{B,k}^{0}/\gamma_{M}}\right)^{\epsilon} \leq 1$$

$$\frac{M_{B}}{\max M_{B,k}/\gamma_{M}} + \frac{V}{\max V_{k}/\gamma_{M}} \le 1,3 \quad \text{oder} \quad \frac{M_{B}}{M_{B,k}^{0}/\gamma_{M}} + \frac{V}{V_{k}^{0}/\gamma_{M}} \le 1$$

Sind keine Werte für ${\rm M^\circ_B}$ und ${\rm R^\circ_B}$ angegeben ist kein ${\rm M_{B,k}}/{\rm R_{B,k}}$ - Interaktionsnachweis zu führen.

Kalzip TR 40/185

Charakteristische Durchknöpftragfähigkeitswerte für Verbindungen nach DIN 18807

Anlage 4.2.3 zum Prüfbescheid
ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.
Prüfbescheid Nr. T12-105
Landesdirektion Leipzig
Landesstelle für Bautechnik

Leipzig, den 29.06.2012 Leiter: FREISIAN Bearbeiter: SACHSEN

Profiltafel in

Negativlage

Basiswert der Durchknöpfkraft Z_{0,k} in kN pro Verbindungselement in Abhängigkeit von der Blechdicke in mm und dem Scheibendurchmesser d in mm. ^{1) 2)}

Nennwert der Zugfestigkeit: $R_m = 220 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,33 \text{ zu verwenden}$.

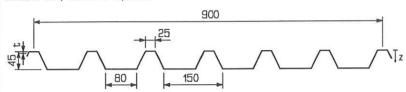
Markindon a	Stützweite	t = (0,70	t = 0	0,80	t = '	1,00	t = 1	1,20	t:	= -
Verbindung	L in m	d = 16	d = 19	d = 16	d = 19	d = 16	d = 19	d = 16	d = 19	d = -	d = -
T											
	Endauflager	-	1,87	-	2,39	-	3,56	-	4,27	-	-
	1,00	-	1,23	20	1,38	-	1,99	-	2,93	-	-
	1,50	-	-	-	-	.		=	•	-	-
/	2,00	#3	0,851	-	1,03	-	1,28	-	1,53	-	-
1	3,00		0,591	(=)	0,757	-	0,927	-	1,11	-	14
	4,00		0,750	-	0,595	-	0,874	-	1,05	-	-
4											

1) Durchknöpfkraft: $Z_{I,k} = \alpha_L \cdot \alpha_M \cdot f_{bA} \cdot Z_{0,k}$

mit α_L = Beiwert zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 (α_I = 1,0 bei Befestigung am Endauflager)

α_м = Beiwert zur Berücksichtigung der Werkstoffes der Dichtscheibe nach DIN 18807, Teil 6, Tabelle 3

f_{ba} = Beiwert zur Berücksichtigung der Anordnung der Verbindung nach DIN 18807, Teil 7, Tabelle 3


²⁾ Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.

Kalzip TR 45/150

Querschnitts- und Schubfeldwerte nach DIN 18807 Teil 6

Profiltafel in Positivlage

Maße in mm, Radien R= 3,5 mm

Anlage 5.1.1 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik

Leipzig, den 29.06.2012 Bearbeiter: FREISTAAT

Nennwert der Spannung an der 0,2%- Dehngrenze: R_{p0,2}= 185 N/mm²; Zugfestigkeit R_m = 220 N/mm²

Maßge	ebende Q	uerschnitt	swerte							Grenzsti	ützweite ³⁾
Blech-	Eigen-	Biegu	ung 1)		Norr	nalkraftbea	anspruch	ung		sales, Voyele Mayorine space	
dicke	last			nicht redu	schnitt ²⁾	Einfeld- träger	Mehrfeld träger				
t	g	l _{ef}	l _{ef}	A_g i_g Z_g A_{ef} i_{ef} Z_{ef}							l _{gr}
mm	kN/m²	cm4/m	cm4/m	cm²/m	cm	cm	cm²/m	cm	cm	m	m
0,7	0,026	25,8	22,3	9,51	1,71	2,79	3,38	2,02	2,20	/	1 /
0,8	0,030	31,8	27,4	10,9	1,71	2,79	4,42	1,99	2,20	/	
1,0	0,038	39,7	35,0	13,6	1,71	2,79	6,84	1,95	2,22		
1,2	0,045	47,5	41,9	16,3	1,71	2,79	9,45	1,89	2,31	/	

Schubfeldwerte

			$T_{3,k} = G_S/75$	50 in kN/m			
			$G_{s} = 10^{4}/$	$(k_1' + k_2' / L_s)$			
t	L _R 4)	T _{1,k} 4)	k′ ₁	k′2	k*,	k [*] ₂ ⁵⁾	k ₃ ⁶⁾
mm	m	kN/m	m/kN	m²/kN	kN ⁻¹	m²/kN	-

- 1) Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- ²⁾ Wirksamer Querschnitt für eine konstante Druckspannung $\sigma = R_{00,2}$
- 3) Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden
- 4) Für Einzelstützweiten $L_{si} \le L_{R}$ darf $T_{1,k}$ aus der Tabelle entnommen oder mit $(L_{R}/L_{si})^{2}$ erhöht werden; für $L_{si} > L_R$ muß $T_{1,k}$ mit $(L_R/L_{si})^2$ abgemindert werden. Für Einfeldträger ist $T_{1,k} = 2 \times T$ abellenwert.
- 5) Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = [(k_1' + k_1^* \cdot e_L) + (k_2' + k_2^*)/L_s] \cdot 10^{-1} \cdot a \cdot \text{vorh T}$$
 in mm

mit e = Abstand der Verbindungen im Längsstoß in m

a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluss in kN/m

6) $T \times k_3 + A \le R_{A,k} / \gamma_M$, mit $T = \gamma_F$ - facher vorhandener Schubfluss

Kalzip TR 45/150

Charakteristische Tragfähigkeitswerte nach DIN 18807 Teil 6

Anlage 5.1.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012 Leiter: FREISTAAI Bearbeiter: SACHSEN

Profiltafel in

Positivlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächenbelastung ¹⁾ Nehmwert der Spannung an der 0,2%- Dehngrenze: $R_{00.2} = 185 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1$ zu verwenden (10)

Blech- dicke	Feld- moment	Endaufla- gerkraft		Elastis	ch aufnehm	bare Schnit	tgrößen a	n Zwisch	enstützen ⁵⁾	
diono	momoni	goman			max. Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager- kraft
t	$M_{F,k}$	$R_{A,k}$	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
		b _A = 40 mm ²⁾³⁾	Z	wischena	uflagerbreit	e 3)	Z	wischen	auflagerbreit	:e ⁴⁾
		D _A = 40 IIIII = 7-7	b _e	≥ 40	mm; ε=	= 2	b _B	≥ 120	mm; ε=	: 2
0,70	1,18	12,0	1,27	15,2	1,27	13,6	1,27	22,7	1,27	20,3
0,80	1,58	15,6	1,66	20,2	1,66	18,1	1,66	30,2	1,66	27,0
1,00	2,49	23,1	2,28	32,5	2,28	29,1	2,28	48,5	2,28	43,4
1,20	2,99	27,7	2,96	47,9	2,96	42,8	2,96	71,3	2,96	63,8
			50							

Charakteristische Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächenbelastung ¹⁾ Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1$ zu verwenden.

Blech- dicke	Feld- moment				urt mit Kal Dicke ≥ 1		Verb	indung in	jedem ar	nliegenden	Gurt
		Endauf- lager	Zwis	schenauf	lager ⁵⁾⁷⁾ 8	2 = 2	Endauf- lager	Z	Zwischen	auflager ⁶⁾⁷	7)
t	M _{F,k}	$R_{A,k}$	M _{B,k}	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	$R_{A,k}$	$M_{B,k}^0$	V_k^0	max M _{B,k}	max V _k
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
0,70	1,42	6,81	1,31	15,2	1,31	13,6	29,3	1,70	38,1	1,31	29,3
0,80	1,81	9,06	1,72	20,3	1,72	18,1	38,3	2,24	49,8	1,72	38,3
1,00	2,90	14,6	2,63	32,5	2,63	29,1	59,8	3,42	77,7	2,63	59,8
1,20	3,48	21,4	3,16	47,9	3,16	42,8	86,1	4,11	111,9	3,16	86,1

- An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M_{E,k}, sondern mit dem Stützmoment max M_{B,k} für die entgegengesetzte Lastrichtung zu führen.
- 2) b_x = Endauflagerbreite. Bei einem Profiltafelüberstand ü [mm] ≥ s_w/t dürfen die R_{x,k}- Werte um 20% erhöht werden.
- ³⁾ Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 4) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 5) Interaktionsbeziehung für M_R und R_R:

$$\frac{M_{B}}{M_{B}^{0}/\gamma_{M}} + \left(\frac{R_{B}}{R_{B}^{0}/\gamma_{M}}\right)^{\epsilon} \leq 1$$

6) Interaktionsbeziehung für M_B und V:

$$\frac{M_{\text{B}}}{\text{max}M_{\text{B,k}}/\gamma_{\text{M}}} + \frac{V}{\text{max}\,V_{\text{k}}/\gamma_{\text{M}}} \; \leq \; 1,3 \quad \text{oder} \quad \frac{M_{\text{B}}}{M_{\text{B,k}}^0/\gamma_{\text{M}}} + \frac{V}{V_{\text{k}}^0/\gamma_{\text{M}}} \; \leq \; 1$$

Sind keine Werte für ${\rm M^\circ_B}$ und ${\rm R^\circ_B}$ angegeben ist kein ${\rm M_{B,k}}/{\rm R_{B,k}}$ - Interaktionsnachweis zu führen.

Kalzip TR 45/150

Charakteristische Durchknöpftragfähigkeitswerte für Verbindungen nach DIN 18807

Anlage 5.1.3 zum Prüfbescheid ALS TYPENENTWURF in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig Landesstelle für Bautechnik Leipzig, den 29.06.2012 Leiter: Bearbeiter:

FREISTAAT

Profiltafel in

Positivlage

Basiswert der Durchknöpfkraft Z_{0,k} in kN pro Verbindungselement in Abhängigkeit von der Blechdicke tin mm Nennwert der Zugfestigkeit: $R_m = 220 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,33 \text{ zu verwenden}$.

Manhindon a		0,70		0,80		1,00		1,20		=-	t =	-
Verbindung	d = 16	d = 22	d = -	d = -	d = -	d = -						
3)	0,854	1,00	0,976	1,14	1,22	1,43	1,46	1,72				
	0,854	1,00	0,976	1,14	1,22	1,43	1,46	1,72				
			0									

¹⁾ Durchknöpfkraft: $Z_{1,k} = \alpha_L \cdot \alpha_M \cdot \alpha_E \cdot Z_{0,k}$

mit α_L = Beiwert zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 (α_L = 1,0 bei Befestigung am Endauflager)

 $\alpha_{_{
m M}}$ = Beiwert zur Berücksichtigung der Werkstoffes der Dichtscheibe nach DIN 18807, Teil 6, Tabelle 3

α_E = Beiwert zur Berücksichtigung der Anordnung der Verbindung nach DIN 18807, Teil 6, Tabelle 4

2) Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.

3) Die Werte dürfen auch bei einer Verbindung mit Kalotten angesetzt werden.

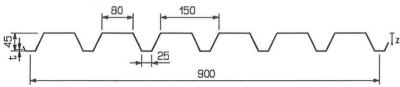
Kalzip TR 45/150

Querschnitts- und Schubfeldwerte nach DIN 18807 Teil 6

Anlage 5.2.1 zum Prüfbescheid
ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012


FREISTAAT

SACHSEN

Bearbeiter:

Profiltafel in Negativlage

Maße in mm, Radien R= 3,5 mm

Tz RADESOIRI

Leiter:

Nennwert der Spannung an der 0,2%- Dehngrenze: $R_{00.2}$ = 185 N/mm²; Zugfestigkeit R_m = 220 N/mm²

Blech-	Eigen-	Biegi	ung 1)		Norr	nalkraftbea	anspruchi	ung			
dicke	last			nicht redu	uzierter Q	uerschnitt	wirksam	ner Quers	schnitt ²⁾	Einfeld- träger	Mehrfeld träger
t	g	l _{ef}	l _{ef}	A _g	i _g	Z _g	A _{ef}	i _{ef}	Z _{ef}	l _{gr}	l _{gr}
mm	kN/m²	cm⁴/m	cm⁴/m	cm²/m	cm	cm	cm²/m	cm	cm	m	m
0,70	0,026	22,3	25,8	9,51	1,71	1,61	3,38	2,02	2,20	-	-
0,80	0,030	27,4	31,8	10,9	1,71	1,61	4,42	1,99	2,20	-	_
1,00	0,038	35,0	39,7	13,6	1,71	1,61	6,84	1,95	2,18	1,25	1,88
1,20	0,045	41,9	47,5	16,3	1,71	1,61	9,45	1,89	2,09	1,50	6,88
1											

Schubfeldwerte

			$T_{3,k} = G_S/75$	50 in kN/m			
t	L _R 4)	T _{1,k} 4)	$G_{s} = 10^{4/3}$	(k' ₁ +k' ₂ /L _s) k' ₂	k* ₁	k [*] ₂ ⁵⁾	k ₃ ⁶⁾
mm	m	kN/m	m/kN	m²/kN	kN ⁻¹	m²/kN	-

- 1) Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- ²⁾ Wirksamer Querschnitt für eine konstante Druckspannung $\sigma = R_{00.2}$
- 3) Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden darf.
- ⁴⁾ Für Einzelstützweiten $L_{si} \le L_R$ darf $T_{1,k}$ aus der Tabelle entnommen oder mit $(L_R/L_{si})^2$ erhöht werden; für $L_{si} > L_R$ muß $T_{1,k}$ mit $(L_R/L_{si})^2$ abgemindert werden. Für Einfeldträger ist $T_{1,k} = 2 \times T$ abellenwert.
- ⁵⁾ Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = [(k'_1 + k'_1 \cdot e_L) + (k'_2 + k'_2)/L_s] \cdot 10^{-1} \cdot a \cdot \text{vorh T}$$
 in mm

mit e, = Abstand der Verbindungen im Längsstoß in m

a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluss in kN/m

6) $T \times k_3 + A \le R_{A,k} / \gamma_M$, mit $T = \gamma_F$ - facher vorhandener Schubfluss

Kalzip TR 45/150

Charakteristische Tragfähigkeitswerte nach DIN 18807 Teil 6

Anlage 5.2.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012 FREISTAAT Bearbeiter:

Profiltafel in

Negativlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächenbelastung 1) Wennwert der Spannung an der 0,2%- Dehngrenze: $R_{pq,2} = 185 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1 \text{ zu verwenden}$

Blech- dicke	Feld- moment	Endaufla- gerkraft		Elastis	ch aufnehm	bare Schnit	ttgrößen a	n Zwisch	enstützen ⁵⁾	
diono	momone	gorman			max. Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager- kraft
t	$M_{F,k}$	$R_{A,k}$	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	M _{B,k}	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
		b _A =40 mm ²⁾³⁾			uflagerbreit mm; ε=	e ³⁾ = 2			auflagerbreit mm; ε=	te ⁴⁾ = 2
0,70	1,42	12,0	1,49	22,9	1,16	9,02	-	=:	1,22	12,8
0,80	1,81	15,6	2,17	24,7	1,54	11,5	**	=)	1,77	17,9
1,00	2,90	23,1	2,99	48,4	2,35	18,5	-	=1	2,59	27,5
1,20	3,48	27,7	3,59	58,1	2,82	22,2	-	-	3,11	33,0

Charakteristische Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächenbelastung 1) Als Teilsicherheitsbeiwert ist $\gamma_{M} = 1,1$ zu verwenden.

Blech- dicke	Feld- moment		ndung in j enlänge ≥				Verb	indung in	jedem an	liegenden	Gurt
		Endauf- lager	Zwis	schenaufl	ager ⁵⁾⁷⁾	ε=-	Endauf- lager			lager ⁵⁾⁷⁾	
t	$M_{F,k}$	$R_{A,k}$	M _{B,k}	$M_{B,k}^0$ $R_{B,k}^0$ $\max M_{B,k}$ $\max R_{B,k}$				$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	$\max R_{_{B,k}}$
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
0,70	1,18						10,0		-	1,43	14,9
0,80	1,58						13,2	5 	-	1,76	17,6
1,00	2,49						18,7	2,94	102	2,60	22,8
1,20	2,99						22,4	3,53	122	3,12	27,3

- 1) An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment $M_{E,k}$, sondern mit dem Stützmoment max $M_{B,k}$ für die entgegengesetzte Lastrichtung zu führen.
- 2) $b_A = \text{Endauflagerbreite}$. Bei einem Profiltafelüberstand ü [mm] $\geq s_w/t$ dürfen die $R_{A,k}$ Werte um 20% erhöht werden.
- Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- Interaktionsbeziehung für M_B und R_B:

$$^{6)}$$
 Interaktionsbeziehung für $M_{_{\! B}}$ und V:

$$\frac{M_B}{M_{B_B}^0/\gamma_M} + \left(\frac{R_B}{R_{B_B}^0/\gamma_M}\right)^{\epsilon} \le 1$$

$$\frac{M_{\text{B}}}{\text{max}M_{\text{B,k}}/\gamma_{\text{M}}} + \frac{V}{\text{max}V_{\text{k}}/\gamma_{\text{M}}} \leq 1,3 \quad \text{oder} \quad \frac{M_{\text{B}}}{M_{\text{B,k}}^0/\gamma_{\text{M}}} + \frac{V}{V_{\text{k}}^0/\gamma_{\text{M}}} \leq 1$$

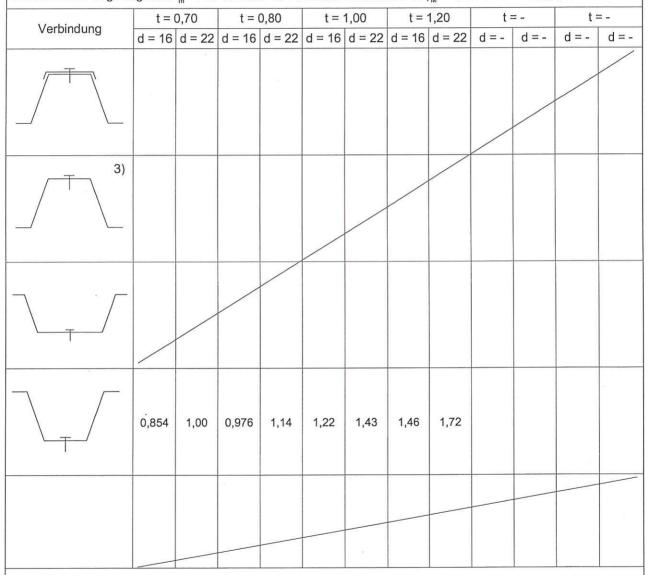
Sind keine Werte für M_{B}° und R_{B}° angegeben ist kein M_{B}/R_{B} Interaktionsnachweis zu führen.

Kalzip TR 45/150

Charakteristische Durchknöpftragfähigkeitswerte für Verbindungen nach DIN 18807

Anlage 5.2.3 zum Prüfbescheid ALS TYPENENTWURF in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012 FREISTAA Bearbeiter:


Leiter:

Profiltafel in

Negativlage

Basiswert der Durchknöpfkraft Z_{o,k} in kN pro Verbindungselement in Abhängigkeit von der Blechdicke t in ver und dem Scheibendurchmesser d in mm. 1) 2)

Nennwert der Zugfestigkeit: $R_m = 220 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,33 \text{ zu verwenden}$

¹⁾ Durchknöpfkraft: $Z_{I,k} = \alpha_L \cdot \alpha_M \cdot \alpha_E \cdot Z_{0,k}$

mit α_L = Beiwert zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 ($\alpha_L = 1,\overline{0}$ bei Befestigung am Endauflager)

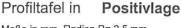
 $\alpha_{_{
m M}}^{}$ = Beiwert zur Berücksichtigung der Werkstoffes der Dichtscheibe nach DIN 18807, Teil 6, Tabelle 3

α₌ = Beiwert zur Berücksichtigung der Anordnung der Verbindung nach DIN 18807, Teil 6, Tabelle 4

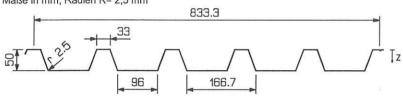
2) Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.

3) Die Werte dürfen auch bei einer Verbindung mit Kalotten angesetzt werden.

Kalzip TR 50/167


Querschnitts- und Schubfeldwerte nach DIN 18807 Teil 6

Anlage 6.1.1 zum Prüfbescheid ALS TYPENENTWURF


in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012 ter: FREISTAAL Bearbeiter:

SACHSEN

Nennwert der Spannung an der 0.2%- Dehngrenze: R ... = 185 N/mm²: Zugfestigkeit R = 220 N/mm²

Maßge	ebende Q	uerschnitt	swerte							Grenzsti	ützweite 3)
Blech-	Eigen-	Bieg	ung ¹⁾		Norr	nalkraftbea	anspruch	ung			
dicke	last	**************************************		nicht reduzierter Querschnitt wirksamer					schnitt ²⁾	Einfeld- träger	Mehrfeld- träger
t	g	l _{ef}	I _{ef}	A _g	i _g	Z _g	A _{ef}	i _{ef}	Z _{ef}	l _{gr}	l _{gr}
mm	kN/m²	cm⁴/m	cm⁴/m	cm²/m	cm	cm	cm²/m	cm	cm	m	m
0,7	0,0274	36,06	26,39	9,90	1,98	3,17	3,04	2,30	2,50	/	
0,8	0,0313	42,45	31,39	11,3	1,98	3,17	3,97	2,28	2,50	/	/
1,0	0,0392	55,23	41,97	14,2	1,98	3,17	6,21	2,23	2,50	/	
1,2	0,0470	66,28	53,20	17,0	1,98	3,17	8,94	2,18	2,50	/	
					·	~~			11	/ .	

Schubfeldwerte

			$T_{3,k} = G_S/75$	50 in kN/m			
			$G_s = 10^4/6$	$(k_1' + k_2' / L_s)$			
t	L _R 4)	T _{1,k} 4)	k′ ₁	k′ ₂	k* ₁	k [*] ₂ ⁵⁾	k ₃ 6)
mm	m	kN/m	m/kN	m²/kN	kN ⁻¹	m²/kN	-

- 1) Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- ²⁾ Wirksamer Querschnitt für eine konstante Druckspannung σ = $R_{p0,2}$
- 3) Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden
- ⁴⁾ Für Einzelstützweiten $L_{si} \le L_R$ darf $T_{1,k}$ aus der Tabelle entnommen oder mit $(L_R/L_{si})^2$ erhöht werden; für $L_{si} > L_{R}$ muß T_{1k} mit $(L_{R}/L_{si})^{2}$ abgemindert werden. Für Einfeldträger ist $T_{1k} = 2 \times T$ abellenwert.
- 5) Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = [(k_1' + k_1^* \cdot e_L) + (k_2' + k_2^*)/L_s] \cdot 10^{-1} \cdot a \cdot vorh T$$
 in mm

mit e, = Abstand der Verbindungen im Längsstoß in m

a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluss in kN/m

⁶⁾ $T \times k_3 + A \le R_{A,k} / \gamma_M$, mit $T = \gamma_F$ - facher vorhandener Schubfluss

Stand: 22. Juni 2012

Kalzip TR 50/167

Charakteristische Tragfähigkeitswerte nach DIN 18807 Teil 6

Anlage 6.1.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012 Leiter: FREISTAAT Bearbeiter:

SACHSEN

Profiltafel in

Positivlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächenbelastung ¹⁾ Nennwert der Spannung an der 0,2%- Dehngrenze: $R_{00.2} = 185 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1$ zu verwenden und Albert in Verwenden und A

Blech- dicke	Feld- moment	Endaufla- gerkraft		Elastis	ch aufnehm	bare Schnif	tgrößen a	n Zwisch	enstützen ⁵⁾	
dioito	momoni	gorman			max. Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager- kraft
t	$M_{F,k}$	$R_{A,k}$	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
		b _A = 40 mm ²⁾³⁾	Z	wischena	uflagerbreit	e ³⁾	Z	Zwischena	auflagerbreit	:e ⁴⁾
		D _A -40111111	b _e	$_{3} \geq 40$	mm; ε=	= 2	b _e	≥ 60	mm; ε=	: 2
0,70	1,34	6,62	1,31	14,8	1,31	13,2	1,31	16,5	1,31	14,8
0,80	1,75	8,77	1,72	19,6	1,72	17,5	1,72	21,9	1,72	19,6
1,00	2,77	14,0	2,50	31,3	2,50	28,0	2,50	35,0	2,50	31,3
1,20	3,76	20,5	3,27	45,8	3,27	41,0	3,27	51,2	3,27	45,8
	411	935cr	22			124				

Charakteristische Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächenbelastung ¹⁾ Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1$ zu verwenden.

Blech- dicke	Feld- moment				urt mit Kal Dicke ≥ 1		Verb		jedem ar Schraube	iliegenden je Gurt	Gurt
		Endauf- lager	Zwis		lager ⁵⁾⁷⁾ ε	= 2	Endauf- lager	Z	Zwischen	auflager 6)7	י
t	M _{F,k}	$R_{A,k}$	M _{B,k}	$M_{B,k}^0$ $R_{B,k}^0$ $\max M_{B,k}$ $\max R_{B,k}$				$M_{B,k}^0$	V_k^0	max M _{B,k}	$\max V_{k}$
mm	kNm/m	kN/m	kNm/m					kNm/m	kN/m	kNm/m	kN/m
0,70	1,31	6,62	1,34	15,2	1,34	13,6	27,7	1,74	36,0	1,34	27,7
0,80	1,72	8,77	1,75	20,2	1,75	18,1	36,2	2,28	47,1	1,75	36,2
1,00	2,50	14,0	2,77	32,2	2,77	28,8	56,6	3,60	73,6	2,77	56,6
1,20	3,27	20,5	3,76	47,2	3,76	42,2	81,5	4,89	106,0	3,76	81,5
	15		459		25		**				

- An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M_{E,k}, sondern mit dem Stützmoment max M_{B,k} für die entgegengesetzte Lastrichtung zu führen.
- 2) $b_a = \text{Endauflagerbreite}$. Bei einem Profiltafelüberstand ü [mm] $\geq s_a/t$ dürfen die $R_{a,k}$ Werte um 20% erhöht werden.
- 3) Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 4) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 5) Interaktionsbeziehung für M_B und R_B:

$$\frac{M_{B}}{M_{B,k}^{0}/\gamma_{M}} + \left(\frac{R_{B}}{R_{B,k}^{0}/\gamma_{M}}\right)^{\epsilon} \leq 1$$

6) Interaktionsbeziehung für M_R und V:

$$\frac{M_{B}}{\text{max}M_{B,k}/\gamma_{M}} + \frac{V}{\text{max}V_{k}/\gamma_{M}} \leq 1.3 \quad \text{oder} \quad \frac{M_{B}}{M_{B,k}^{0}/\gamma_{M}} + \frac{V}{V_{k}^{0}/\gamma_{M}} \leq 1$$

Sind keine Werte für M_B° und R_B° angegeben ist kein $M_{B\,\kappa}/R_{B\,\kappa}$ Interaktionsnachweis zu führen.

Kalzip TR 50/167

Charakteristische Durchknöpftragfähigkeitswerte für Verbindungen nach DIN 18807

Anlage 6.1.3 zum Prüfbescheid

ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.
Prüfbescheid Nr. T12-105
Landesdirektion Leipzig

Landesstelle für Bautechnik
Leipzig, den 29.06.2012

eiter: FREISTAAT Bearbeiter:

Profiltafel in

Positivlage

Basiswert der Durchknöpfkraft Z_{0,k} in kN pro Verbindungselement in Abhängigkeit von der Blechdicke tin mm und dem Scheibendurchmesser d in mm. ^{1) 2)}

Nennwert der Zugfestigkeit: $R_m = 220 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,33 \text{ zu verwenden}$.

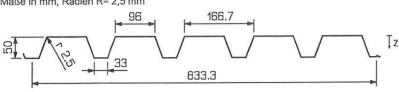
		m	·			4.00		1 00				
Verbindung		0,70		0,80		1,00		1,20		= -		-
Volumenta	d = 16	d = 19	d = -	d = -	d = -	d = -						
3)	0,854	0,930	0,976	1,06	1,22	1,33	1,46	1,59				
	0,854	0,930	0,976	1,06	1,22	1,33	1,46	1,59				
			2									

- 1) Durchknöpfkraft: $Z_{I,k} = \alpha_L \cdot \alpha_M \cdot \alpha_E \cdot Z_{0,k}$
 - mit α_L = Beiwert zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 (α_I = 1,0 bei Befestigung am Endauflager)
 - $\alpha_{_{M}}$ = Beiwert zur Berücksichtigung der Werkstoffes der Dichtscheibe nach DIN 18807, Teil 6, Tabelle 3
 - $\alpha_{_{\rm E}}\,$ = Beiwert zur Berücksichtigung der Anordnung der Verbindung nach DIN 18807, Teil 6, Tabelle 4
- ²⁾ Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.
- 3) Die Werte dürfen auch bei einer Verbindung mit Kalotten angesetzt werden.

Kalzip TR 50/167

Querschnitts- und Schubfeldwerte nach DIN 18807 Teil 6

Anlage 6.2.1 zum Prüfbescheid ALS TYPENENTWURF


in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012

Profiltafel in Negativlage

Maße in mm, Radien R= 2,5 mm

Nennwert der Spannung an der 0,2%- Dehngrenze: R_{p0,2} = 185 N/mm²; Zugfestigkeit R_m = 220 N/mm²

Blech-	Eigen-	Bieau	ung 1)		Norn	nalkraftbea	anspruchu	ung		Grenzsti	
dicke	last		3	nicht redu	ızierter Qı	uerschnitt	wirksam	ner Quers	chnitt ²⁾	Einfeld- träger	Mehrfeld träger
t	g	l _{ef}	l _{ef}	A _g	i _g	Z _g	A _{ef}	i _{ef}	Z _{ef}	l _{gr}	l _{gr}
mm	kN/m ²	cm⁴/m	cm⁴/m	cm²/m	cm	cm	cm ² /m	cm	cm	m	m
0,70	0,0274	26,39	36,06	9,90	1,98	1,83	3,04	2,30	2,50	/	,
0,80	0,0313	31,39	42,45	11,3	1,98	1,83	3,97	2,28	2,50	/	/
1,00	0,0392	41,97	55,23	14,2	1,98	1,83	6,21	2,23	2,50	/	
1,20	0,0470	53,20	66,28	17,0	1,98	1,83	8,94	2,18	2,50	/	

Schubfeldwerte

			$T_{3,k} = G_{S}/75$	50 in kN/m			
			G _s = 10 ⁴ /($(k_1^{\prime} + k_2^{\prime} / L_s)$		21	
t	L _R 4)	T _{1,k} 4)	k′ ₁	k′2	k* ₁	k [*] ₂ ⁵⁾	k ₃ ⁶⁾
mm	m	kN/m	m/kN	m²/kN	kN ⁻¹	m²/kN	-

- 1) Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- ²⁾ Wirksamer Querschnitt für eine konstante Druckspannung $\sigma = R_{00.2}$
- 3) Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden darf.
- 4) Für Einzelstützweiten $L_{s_i} \le L_R$ darf $T_{1,k}$ aus der Tabelle entnommen oder mit $(L_R/L_{s_i})^2$ erhöht werden; für $L_{s_i} > L_R$ muß $T_{1,k}$ mit $(L_R/L_{s_i})^2$ abgemindert werden. Für Einfeldträger ist $T_{1,k} = 2 \times T$ abellenwert.
- 5) Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = [(k_1' + k_1^* \cdot e_L) + (k_2' + k_2^*)/L_s] \cdot 10^{-1} \cdot a \cdot \text{vorh T}$$
 in mm

mit e = Abstand der Verbindungen im Längsstoß in m

a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluss in kN/m

6) $T \times k_3 + A \le R_{A,k} / \gamma_M$, mit $T = \gamma_F$ - facher vorhandener Schubfluss

Kalzip TR 50/167

Charakteristische Tragfähigkeitswerte nach DIN 18807 Teil 6

Anlage 6.2.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012 Leiter FREISTAAT Bearbeiter:

Profiltafel in

Negativlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächenbelastung ¹⁾ Nennwert der Spännung an der 0,2%- Dehngrenze: $R_{00.2} = 185 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1$ zu verwenden 1000

Blech- dicke	Feld- moment	Endaufla- gerkraft		Elastis	ch aufnehm	bare Schnit	tgrößen a	n Zwisch	enstützen ⁵⁾	
dioito	momone	gorman			max. Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager- kraft
t	$M_{F,k}$	$R_{A,k}$	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	$M_{B,k}^0$	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
		b _a = 40 mm ²⁾³⁾	Z	wischena	uflagerbreit	e ³⁾	Z	Zwischena	auflagerbreit	e 4)
		D _A -401111177	b _e	≥ 40	mm; ε=	= 2	b _e	≥ 60	mm; ε=	: 2
0,70	1,31	6,62	1,34	14,8	1,34	13,2	1,34	16,5	1,34	14,8
0,80	1,72	8,77	1,75	19,6	1,75	17,5	1,75	21,9	1,75	19,6
1,00	2,50	14,0	2,77	31,3	2,77	28,0	2,77	35,0	2,77	31,3
1,20	3,27	20,5	3,76	45,8	3,76	41,0	3,76	51,2	3,76	45,8
2	352	1888	234							

Charakteristische Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächenbelastung ¹⁾ Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1$ zu verwenden.

Blech- dicke	Feld- moment	Verbindung in jedem anliegenden Gurt						bindung in jedem 2. anliegenden Gurt				
	- 1	Endauf- lager		Zwischen	auflager 6)	Endauf- lager	Zwischenauflager 6)				
t	$M_{F,k}$	$R_{A,k}$	$M_{B,k}^0$	V_k^0	max M _{B,k}	max R _{B,k}	$R_{A,k}$	$M_{B,k}^0$	V_k^0	max M _{B,k}	$\max V_{_k}$	
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	
0,70	1,34	27,7	1,70	36,0	1,31	27,7	13,9	0,852	18,0	0,655	13,9	
0,80	1,75	36,2	2,24	47,1	1,72	36,2	18,1	1,12	23,5	0,860	18,1	
1,00	2,77	56,6	3,25	73,6	2,50	56,6	28,3	1,63	36,8	1,25	28,3	
1,20	3,76	81,5	4,25	106	3,27	81,5	40,8	2,13	53,0	1,64	40,8	
	100	8	41									

- An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M_{E,k}, sondern mit dem Stützmoment max M_{B,k} für die entgegengesetzte Lastrichtung zu führen.
- 2) $b_A = \text{Endauflagerbreite}$. Bei einem Profiltafelüberstand ü [mm] $\geq s_w/t$ dürfen die $R_{A,k}$ Werte um 20% erhöht werden.
- 3) Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 4) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 5) Interaktionsbeziehung für M_B und R_B:

$$\frac{M_B}{M_{BL}^0/\gamma_M} + \left(\frac{R_B}{R_{BL}^0/\gamma_M}\right)^{\epsilon} \le 1$$

6) Interaktionsbeziehung für M_B und V:

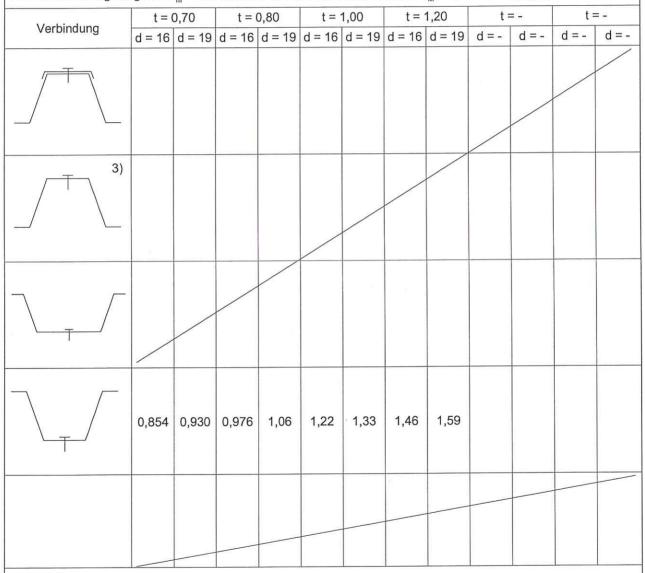
$$\frac{M_{\text{B}}}{\text{max}M_{\text{B},k}/\gamma_{\text{M}}} + \frac{V}{\text{max}V_{\text{k}}/\gamma_{\text{M}}} \leq 1,3 \quad \text{oder} \quad \frac{M_{\text{B}}}{M_{\text{B},k}^{0}/\gamma_{\text{M}}} + \frac{V}{V_{\text{k}}^{0}/\gamma_{\text{M}}} \leq 1$$

Sind keine Werte für M_B° und R_B° angegeben ist kein $M_{B,k}/R_{B,k}$ - Interaktionsnachweis zu führen.

Kalzip TR 50/167

Charakteristische Durchknöpftragfähigkeitswerte für Verbindungen nach DIN 18807

Anlage 6.2.3 zum Prüfbescheid ALS TYPENENTWURF in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig Landesstelle für Bautechnik


Leipzig, den 29.06.2012 Bearbeiter: FREISTAAT

SACHSEN

Profiltafel in

Negativlage

Basiswert der Durchknöpfkraft Z_{0,k} in kN pro Verbindungselement in Abhängigkeit von der Blechdicke tin mm Nennwert der Zugfestigkeit: $R_m = 220 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,33 \text{ zu verwende}$

1) Durchknöpfkraft: $Z_{I,k} = \alpha_L \cdot \alpha_M \cdot \alpha_E \cdot Z_{0,k}$

α, = Beiwert zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 (α, = 1,0 bei Befestigung am Endauflager)

 $\alpha_{_{\rm M}}$ = Beiwert zur Berücksichtigung der Werkstoffes der Dichtscheibe nach DIN 18807, Teil 6, Tabelle 3

 $\alpha_{_{\rm E}}\,$ = Beiwert zur Berücksichtigung der Anordnung der Verbindung nach DIN 18807, Teil 6, Tabelle 4

2) Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.

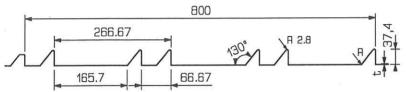
3) Die Werte dürfen auch bei einer Verbindung mit Kalotten angesetzt werden.

Kalzip TF 800

Querschnitts- und Schubfeldwerte nach DIN 18807 Teil 6

Anlage 7.1 zum Prüfbescheid
ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.
Prüfbescheid Nr. T12-105
Landesdirektion Leipzig
Landesstelle für Bautechnik
Leipzig, den 29.06.2012

FREISTAAT


SACHSE

Leiter:

Bearbeiter:

Profiltafel in Positivlage

Maße in mm, Radien R= 3 mm

Nennwert der Spannung an der 0,2%- Dehngrenze: R_{s0.2}= 185 N/mm²; Zugfestigkeit R_m= 220 N/mm²

Maßge	ebende Q	uerschnitt	swerte					30		Grenzstützweite 3)	
Blech-	Eigen-	Bieg	ung 1)								
dicke	last			nicht redu	uzierter Qı	uerschnitt	wirksamer Querschnitt 2)			Einfeld- träger	Mehrfeld träger
t	g	I _{ef}	I _{ef}	A _g	i _g	Z _g	A _{ef}	i _{ef}	Z _{ef}	l _{gr}	l _{gr}
mm	kN/m²	cm4/m	cm4/m	cm ² /m	cm	cm	cm²/m	cm	cm	m	m
0,80	0,0324	14,37	10,15								
0,90	0,0365	16,17	11,78	177							
1,00	0,0405	17,96	13,45								
1,20	0,0486	21,56	16,69								
140											

Schubfeldwerte

N/m	$T_{3,k} = G_s/750$ in kN/m				
L _s)	$G_s = 10^4/(k_1' + k_2'/L_s)$				
k'_{2} k^{*}_{1} $k^{*}_{2}^{5}$ k_{3}^{6}	k′2	k′ ₁	T _{1,k} 4)	L _R 4)	t
/kN kN ⁻¹ m²/kN -	m²/kN	m/kN	kN/m	m	mm
	_				

- 1) Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- ²⁾ Wirksamer Querschnitt für eine konstante Druckspannung $\sigma = R_{p0,2}$
- 3) Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden darf.
- 4) Für Einzelstützweiten $L_{si} \le L_R$ darf $T_{1,k}$ aus der Tabelle entnommen oder mit $(L_R/L_{si})^2$ erhöht werden; für $L_{si} > L_R$ muß $T_{1,k}$ mit $(L_R/L_{si})^2$ abgemindert werden. Für Einfeldträger ist $T_{1,k} = 2 \times T$ abellenwert.
- 5) Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = [(k_1' + k_1^* \cdot e_L) + (k_2' + k_2^*)/L_s] \cdot 10^{-1} \cdot a \cdot vorh T$$
 in mm

mit e, = Abstand der Verbindungen im Längsstoß in m

a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluss in kN/m

6) $T \times k_3 + A \le R_{A,k} / \gamma_M$, mit $T = \gamma_F$ - facher vorhandener Schubfluss

Kalzip TF 800

Charakteristische Tragfähigkeitswerte nach DIN 18807 Teil 6

Anlage 7.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T12-105 Landesdirektion Leipzig

Landesstelle für Bautechnik Leipzig, den 29.06.2012 FREISTAAT Bearbeiter: SACHSEN

Profiltafel in

Positivlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächenbelastung 1) Wennwert der Spannung an der 0,2%- Dehngrenze: $R_{20.2} = 185 \text{ N/mm}^2$. Als Teilsicherheitsbeiwert ist $\gamma_M = 1,1$ zu verwenden zu 10%

Blech- dicke	Feld- moment	Endaufla- gerkraft	Elastisch aufnehmbare Schnittgrößen an Zwischenstützen 5)									
dioko	moment	goman			max. Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager- kraft		
t	$M_{F,k}$	R _{A,k}	M _{B,k}	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	M _{B,k}	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}		
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m		
		b _A = 40 mm ²⁾³⁾	Z	wischena	uflagerbreit	e 3)	Zwischenauflagerbreite 4)					
		D _A -4011111	$b_B \ge 0$ mm; $\varepsilon = 2$				$b_B \ge 40 \text{ mm}; \epsilon = 2$					
0,80	0,868	4,58	0,803	8,22	0,803	7,35	0,803	10,24	0,803	9,16		
0,90	1,033	5,88	0,920	10,54	0,920	9,43	0,920	13,15	0,920	11,76		
1,00	1,196	7,34	1,039	13,17	1,039	11,78	1,039	16,41	1,039	14,68		
1,20	1,454	10,76	1,284	19,31	1,284	17,27	1,284	24,07	1,284	21,53		

Charakteristische Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächenbelastung 1) Als Teilsicherheitsbeiwert ist $\gamma_{\rm M}$ = 1,1 zu verwenden.

Blech-	Feld-	Verbir	ndung in je	edem anli	egenden (Verbindung in jedem 2. anliegenden Gurt					
dicke	moment	Endauf- lager		Zwischen	auflager 6)		Endauf- lager	Zwischenauflager			
t	$M_{F,k}$	$R_{A,k}$	M _{B,k}	V_k^0	max M _{B,k}	$\max V_{_k}$	R _{A,k}	M _{B,k}	V_k^0	max M _{B,k}	$\max V_{_k}$
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
0,80	0,803	18,52	1,128	24,08	0,868	18,52	9,26	0,564	12,04	0,434	9,26
0,90	0,920	23,45	1,343	30,49	1,033	23,45	11,73	0,671	15,24	0,517	11,73
1,00	1,039	28,95	1,555	37,64	1,196	28,95	14,48	0,777	18,82	0,598	14,48
1,20	1,284	38,49	1,890	50,04	1,454	38,49	19,25	0,945	25,02	0,727	19,25
		.55									

- 1) An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment $M_{F,k}$, sondern mit dem Stützmoment max $M_{B,k}$ für die entgegengesetzte Lastrichtung zu führen.
- 2) $b_A = \text{Endauflagerbreite}$. Bei einem Profiltafelüberstand ü [mm] $\geq s_w/t$ dürfen die $R_{A,k}$ Werte um 20% erhöht werden.
- 3) Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 5) Interaktionsbeziehung für M_B und R_B:

6) Interaktionsbeziehung für M_p und V:

$$\frac{M_{B}}{M_{B,k}^{0}/\gamma_{M}} + \left(\frac{R_{B}}{R_{B,k}^{0}/\gamma_{M}}\right)^{\epsilon} \leq 1$$

$$\frac{M_{B}}{\text{max}M_{B,k}/\gamma_{M}} + \frac{V}{\text{max}V_{k}/\gamma_{M}} \leq 1,3 \quad \text{oder} \quad \frac{M_{B}}{M_{B,k}^{0}/\gamma_{M}} + \frac{V}{V_{k}^{0}/\gamma_{M}} \leq 1$$

Sind keine Werte für M°_B und R°_B angegeben ist kein M_{B k}/R_{B k}- Interaktionsnachweis zu führen.

Kalzip TF 800

Charakteristische Durchknöpftragfähigkeitswerte für Verbindungen nach DIN 18807

Anlage 7.3 zum Prüfbescheid
ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.
Prüfbescheid Nr. T12-105
Landesdirektion Leipzig
Landesstelle für Bautechnik
Leipzig, den 29.06.2012
Leiter:

Profiltafel in

Positivlage

Basiswert der Durchknöpfkraft Z_{0,k} in kN pro Verbindungselement in Abhängigkeit von der Blechdicke tur nm und dem Scheibendurchmesser d in mm. 1) 2)

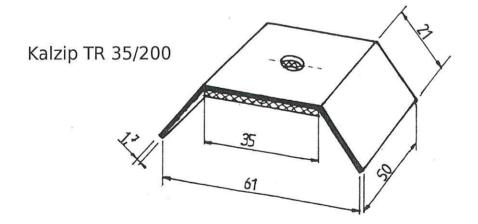
Nennwert der Zugfestigkeit: R_m = 220 N/mm². Als Teilsicherheitsbeiwert ist γ_M = 1,33 zu verwenden.

)/ l: l	t = 0,80		t = 0,90		t = 1,00		t = 1,20		t =	=-
Verbindung	d = 10	d = 14	d = -	d = -						
	0,771	0,913	0,868	1,03	0,964	1,14	1,16	1,37		
							0			
									12	

¹⁾ Durchknöpfkraft: $Z_{I,k} = \alpha_L \cdot \alpha_M \cdot \alpha_E \cdot Z_{0,k}$

mit α_L = Beiwert zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 (α_I = 1,0 bei Befestigung am Endauflager)


 $\alpha_{\rm M}$ = Beiwert zur Berücksichtigung der Werkstoffes der Dichtscheibe nach DIN 18807, Teil 6, Tabelle 3


α_e = Beiwert zur Berücksichtigung der Anordnung der Verbindung nach DIN 18807, Teil 6, Tabelle 4

²⁾ Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.

Ausführungsbeispiele für Kalotten zur Verwendung mit Kalzip Aluminium- Trapezprofilen

Anlage 8 zum Prüfbescheid
ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.
Prüfbescheid Nr. T12-105
Landesdirektion Leipzig
Landesstelle für Bautechnik
Leipzig, den 29,06.2012
Leiter:
FREISTA Bearbeiter:

